AOLO: Analysis and Optimization For Low-Carbon Oriented Wireless Large Language Model Services
- URL: http://arxiv.org/abs/2503.04418v1
- Date: Thu, 06 Mar 2025 13:21:38 GMT
- Title: AOLO: Analysis and Optimization For Low-Carbon Oriented Wireless Large Language Model Services
- Authors: Xiaoqi Wang, Hongyang Du, Yuehong Gao, Dong In Kim,
- Abstract summary: Large language models (LLMs) have become a growing concern due to their substantial energy consumption and carbon footprint.<n>We propose AOLO, a framework for analysis and optimization for low-carbon oriented wireless LLM services.<n>AOLO introduces a comprehensive carbon footprint model that quantifies greenhouse gas emissions across the entire LLM service chain.<n>We propose a low-carbon-oriented optimization algorithm, i.e., SNN-based deep reinforcement learning (SDRL)
- Score: 14.664814078159282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have led to their widespread adoption and large-scale deployment across various domains. However, their environmental impact, particularly during inference, has become a growing concern due to their substantial energy consumption and carbon footprint. Existing research has focused on inference computation alone, overlooking the analysis and optimization of carbon footprint in network-aided LLM service systems. To address this gap, we propose AOLO, a framework for analysis and optimization for low-carbon oriented wireless LLM services. AOLO introduces a comprehensive carbon footprint model that quantifies greenhouse gas emissions across the entire LLM service chain, including computational inference and wireless communication. Furthermore, we formulate an optimization problem aimed at minimizing the overall carbon footprint, which is solved through joint optimization of inference outputs and transmit power under quality-of-experience and system performance constraints. To achieve this joint optimization, we leverage the energy efficiency of spiking neural networks (SNNs) by adopting SNN as the actor network and propose a low-carbon-oriented optimization algorithm, i.e., SNN-based deep reinforcement learning (SDRL). Comprehensive simulations demonstrate that SDRL algorithm significantly reduces overall carbon footprint, achieving an 18.77% reduction compared to the benchmark soft actor-critic, highlighting its potential for enabling more sustainable LLM inference services.
Related papers
- Optimizing Large Language Models: Metrics, Energy Efficiency, and Case Study Insights [2.1249213103048414]
The rapid adoption of large language models (LLMs) has led to significant energy consumption and carbon emissions.
This paper explores the integration of energy-efficient optimization techniques in the deployment of LLMs to address these concerns.
arXiv Detail & Related papers (2025-04-07T21:56:59Z) - Energy-Aware LLMs: A step towards sustainable AI for downstream applications [0.9012198585960441]
Advanced Large Language Models (LLMs) have revolutionized various fields, including communication networks.
LLMs typically require huge computational resources, resulting in terribly high energy consumption.
This research study proposes an end-to-end pipeline that investigates the trade-off between energy efficiency and model performance.
arXiv Detail & Related papers (2025-03-22T14:28:29Z) - CEGI: Measuring the trade-off between efficiency and carbon emissions for SLMs and VLMs [0.0]
This paper analyzes the performance of Small Language Models (SLMs) and Vision Language Models (VLMs)<n>To quantify the trade-off between model performance and carbon emissions, we introduce a novel metric called CEGI (Carbon Efficient Gain Index)<n>Our findings suggest that the marginal gains in accuracy from larger models do not justify the substantial increase in carbon emissions.
arXiv Detail & Related papers (2024-12-03T17:32:47Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - CAFE: Carbon-Aware Federated Learning in Geographically Distributed Data
Centers [18.54380015603228]
Training large-scale artificial intelligence (AI) models demands significant computational power and energy, leading to increased carbon footprint with potential environmental repercussions.
This paper delves into the challenges of training AI models across geographically distributed (geo-distributed) data centers, emphasizing the balance between learning performance and carbon footprint.
We propose a new framework called CAFE (short for Carbon-Aware Federated Learning) to optimize training within a fixed carbon footprint budget.
arXiv Detail & Related papers (2023-11-06T23:59:22Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.