論文の概要: Data-augmented Learning of Geodesic Distances in Irregular Domains through Soner Boundary Conditions
- arxiv url: http://arxiv.org/abs/2503.04579v1
- Date: Thu, 06 Mar 2025 16:13:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:57:38.284229
- Title: Data-augmented Learning of Geodesic Distances in Irregular Domains through Soner Boundary Conditions
- Title(参考訳): ソナー境界条件による不規則領域における測地距離のデータ強化学習
- Authors: Rafael I. Cabral Muchacho, Florian T. Pokorny,
- Abstract要約: 本研究では不規則領域における測地距離を学習するための枠組みを提案する。
トレーニングの安定性と解の精度に及ぼすデータ損失の影響を評価した。
これらの結果から, ハイブリッドデータ物理手法は, 疎データの学習に基づく測地距離解法の信頼性を効果的に向上させることが示唆された。
- 参考スコア(独自算出の注目度): 9.666215305505622
- License:
- Abstract: Geodesic distances play a fundamental role in robotics, as they efficiently encode global geometric information of the domain. Recent methods use neural networks to approximate geodesic distances by solving the Eikonal equation through physics-informed approaches. While effective, these approaches often suffer from unstable convergence during training in complex environments. We propose a framework to learn geodesic distances in irregular domains by using the Soner boundary condition, and systematically evaluate the impact of data losses on training stability and solution accuracy. Our experiments demonstrate that incorporating data losses significantly improves convergence robustness, reducing training instabilities and sensitivity to initialization. These findings suggest that hybrid data-physics approaches can effectively enhance the reliability of learning-based geodesic distance solvers with sparse data.
- Abstract(参考訳): 測地距離は、ドメインのグローバルな幾何学的情報を効率的にエンコードするため、ロボット工学において基本的な役割を果たす。
近年の手法では,物理インフォームドアプローチによるアイコン方程式の解法により,測地線距離を近似するためにニューラルネットワークが用いられている。
効果はあるものの、これらのアプローチは複雑な環境でのトレーニング中に不安定な収束に悩まされることが多い。
本研究では,ソナー境界条件を用いて不規則領域における測地距離を学習する枠組みを提案し,データ損失が訓練安定性と解の精度に与える影響を体系的に評価する。
実験により,データ損失を組み込むことで収束堅牢性が著しく向上し,トレーニング不安定性が低下し,初期化に対する感受性が低下することが示された。
これらの結果から, ハイブリッドデータ物理手法は, 疎データの学習に基づく測地距離解法の信頼性を効果的に向上させることが示唆された。
関連論文リスト
- Integrating Physics of the Problem into Data-Driven Methods to Enhance Elastic Full-Waveform Inversion with Uncertainty Quantification [0.0]
フルウェーブフォーム・インバージョン(Full-Waveform Inversion, FWI)は、非線形反復型地震探査技術である。
FWIは地下物理特性の詳細な推定を行うことができる。
FWIの強い非線形性は、局所ミニマにおける最適化をトラップすることができる。
論文 参考訳(メタデータ) (2024-06-04T11:30:40Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
本研究では,実環境下でのフルフィールド変位と大域力データからモデルのキャリブレーションを行うためのPINNを提案する。
拡張PINNは、実験的な1次元データと合成フルフィールド変位データの両方から材料パラメータを識別できることを実証した。
論文 参考訳(メタデータ) (2022-12-15T11:01:32Z) - Physics-informed Deep Super-resolution for Spatiotemporal Data [18.688475686901082]
ディープ・ラーニングは、粗い粒度のシミュレーションに基づいて科学的データを増やすのに使うことができる。
物理インフォームドラーニングにインスパイアされた、豊かで効率的な時間的超解像フレームワークを提案する。
その結果,提案手法の有効性と効率が,ベースラインアルゴリズムと比較して優れていることが示された。
論文 参考訳(メタデータ) (2022-08-02T13:57:35Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDARベースのローカライゼーションとマッピングは、多くの現代のロボットシステムにおける中核的なコンポーネントの1つである。
本研究では,ロボット動作中の(非)局所性を検出するニューラルネットワークに基づく推定手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:12:00Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Occlusion-aware Unsupervised Learning of Depth from 4-D Light Fields [50.435129905215284]
4次元光場処理と解析のための教師なし学習に基づく深度推定法を提案する。
光場データの特異な幾何学構造に関する基礎知識に基づいて,光場ビューのサブセット間の角度コヒーレンスを探索し,深度マップを推定する。
提案手法は,従来の手法と同等の精度で計算コストを低減した深度マップを作成できる。
論文 参考訳(メタデータ) (2021-06-06T06:19:50Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。