PRISM: Perspective Reasoning for Integrated Synthesis and Mediation as a Multi-Perspective Framework for AI Alignment
- URL: http://arxiv.org/abs/2503.04740v1
- Date: Wed, 05 Feb 2025 02:13:57 GMT
- Title: PRISM: Perspective Reasoning for Integrated Synthesis and Mediation as a Multi-Perspective Framework for AI Alignment
- Authors: Anthony Diamond,
- Abstract summary: Perspective Reasoning for Integrated Synthesis and Mediation (PRISM) is a framework for addressing persistent challenges in AI alignment.<n>PRISM organizes moral concerns into seven "basis worldviews", each hypothesized to capture a distinct dimension of human moral cognition.<n>We briefly outline future directions, including real-world deployments and formal verifications, while maintaining the core focus on multi-perspective synthesis and conflict mediation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose Perspective Reasoning for Integrated Synthesis and Mediation (PRISM), a multiple-perspective framework for addressing persistent challenges in AI alignment such as conflicting human values and specification gaming. Grounded in cognitive science and moral psychology, PRISM organizes moral concerns into seven "basis worldviews", each hypothesized to capture a distinct dimension of human moral cognition, ranging from survival-focused reflexes through higher-order integrative perspectives. It then applies a Pareto-inspired optimization scheme to reconcile competing priorities without reducing them to a single metric. Under the assumption of reliable context validation for robust use, the framework follows a structured workflow that elicits viewpoint-specific responses, synthesizes them into a balanced outcome, and mediates remaining conflicts in a transparent and iterative manner. By referencing layered approaches to moral cognition from cognitive science, moral psychology, and neuroscience, PRISM clarifies how different moral drives interact and systematically documents and mediates ethical tradeoffs. We illustrate its efficacy through real outputs produced by a working prototype, applying PRISM to classic alignment problems in domains such as public health policy, workplace automation, and education. By anchoring AI deliberation in these human vantage points, PRISM aims to bound interpretive leaps that might otherwise drift into non-human or machine-centric territory. We briefly outline future directions, including real-world deployments and formal verifications, while maintaining the core focus on multi-perspective synthesis and conflict mediation.
Related papers
- The Convergent Ethics of AI? Analyzing Moral Foundation Priorities in Large Language Models with a Multi-Framework Approach [6.0972634521845475]
This paper introduces the Priorities in Reasoning and Intrinsic Moral Evaluation (PRIME) framework.
PRIME is a comprehensive methodology for analyzing moral priorities across foundational ethical dimensions.
We apply this framework to six leading large language models (LLMs) through a dual-protocol approach.
arXiv Detail & Related papers (2025-04-27T14:26:48Z) - Trustworthy AI Must Account for Intersectionality [5.244769696325465]
Trustworthy AI encompasses aspirational aspects for aligning AI systems with human values, including fairness, privacy, robustness, explainability, and uncertainty quantification.
Efforts to enhance one aspect often introduce unintended trade-offs that negatively impact others, making it challenging to improve all aspects simultaneously.
We take the position that addressing trustworthiness along each axis in isolation is insufficient. Instead, research on Trustworthy AI must account for intersectionality between aspects and adopt a holistic view across all relevant axes at once.
arXiv Detail & Related papers (2025-04-09T18:00:00Z) - The Superalignment of Superhuman Intelligence with Large Language Models [63.96120398355404]
We discuss the concept of superalignment from the learning perspective to answer this question.
We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation.
We present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing.
arXiv Detail & Related papers (2024-12-15T10:34:06Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - A Moral Imperative: The Need for Continual Superalignment of Large Language Models [1.0499611180329806]
Superalignment is a theoretical framework that aspires to ensure that superintelligent AI systems act in accordance with human values and goals.
This paper examines the challenges associated with achieving life-long superalignment in AI systems, particularly large language models (LLMs)
arXiv Detail & Related papers (2024-03-13T05:44:50Z) - Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto [3.7414804164475983]
Increasing interest in ensuring the safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents.<n>We provide a systematization of existing approaches to the problem of introducing morality in machines - modelled as a continuum.<n>We argue that more hybrid solutions are needed to create adaptable and robust, yet controllable and interpretable agentic systems.
arXiv Detail & Related papers (2023-12-04T11:46:34Z) - AI Alignment: A Comprehensive Survey [70.35693485015659]
AI alignment aims to make AI systems behave in line with human intentions and values.
We identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality.
We decompose current alignment research into two key components: forward alignment and backward alignment.
arXiv Detail & Related papers (2023-10-30T15:52:15Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Factoring the Matrix of Domination: A Critical Review and Reimagination
of Intersectionality in AI Fairness [55.037030060643126]
Intersectionality is a critical framework that allows us to examine how social inequalities persist.
We argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness.
arXiv Detail & Related papers (2023-03-16T21:02:09Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.