論文の概要: A cross-regional review of AI safety regulations in the commercial aviation
- arxiv url: http://arxiv.org/abs/2503.04767v1
- Date: Wed, 12 Feb 2025 10:26:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 10:18:21.962700
- Title: A cross-regional review of AI safety regulations in the commercial aviation
- Title(参考訳): 民間航空におけるAI安全規制の地域横断レビュー
- Authors: Penny A. Barr, Sohel M. Imroz,
- Abstract要約: 航空産業は、常に技術の進歩を取り入れた最初の動きであった。
この早期採用は、厳格な規制と安全クリティカルな手続きのために、貴重な洞察を提供する。
航空業界は、厳格な規制、標準化プロセス、新しい技術の認定を通じてAI脆弱性に対処する最適なプラットフォームを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper we examine the existing artificial intelligence (AI) policy documents in aviation for the following three regions: the United States, European Union, and China. The aviation industry has always been a first mover in adopting technological advancements. This early adoption offers valuable insights because of its stringent regulations and safety-critical procedures. As a result, the aviation industry provides an optimal platform to counter AI vulnerabilities through its tight regulations, standardization processes, and certification of new technologies. Keywords: AI in aviation; aviation safety; standardization; certifiable AI; regulations
- Abstract(参考訳): 本稿では,米国,欧州連合,中国という3つの地域において,航空における既存の人工知能(AI)政策文書について検討する。
航空産業は、常に技術の進歩を取り入れた最初の動きだった。
この早期採用は、厳格な規制と安全クリティカルな手続きのために、貴重な洞察を提供する。
その結果、航空業界は、厳格な規制、標準化プロセス、新しい技術の認定を通じてAI脆弱性に対処する最適なプラットフォームを提供する。
キーワード:航空におけるAI、航空安全、標準化、認定AI、規制
関連論文リスト
- Standardization Trends on Safety and Trustworthiness Technology for Advanced AI [0.0]
大規模言語モデルと基礎モデルに基づく最近のAI技術は、人工知能に近づいたり、超えたりしている。
これらの進歩は、高度なAIの安全性と信頼性に関する懸念を引き起こしている。
AIの安全性と信頼性を確保するため、国際的に合意された標準を開発するための努力が実施されている。
論文 参考訳(メタデータ) (2024-10-29T15:50:24Z) - Safety cases for frontier AI [0.8987776881291144]
安全事例とは、ある運用状況においてシステムが十分に安全であるという証拠によって支持された構造化された議論を行う報告である。
安全ケースは、航空や原子力など他の安全上重要な産業ですでに一般的である。
業界における自己規制と政府の規制の両方において、これらがフロンティアAIガバナンスにおいて有用なツールである理由を説明します。
論文 参考訳(メタデータ) (2024-10-28T22:08:28Z) - Towards certifiable AI in aviation: landscape, challenges, and opportunities [4.6986079126463505]
本稿では,アビオニクスにおける形式的AI認証の総合的なマインドマップを提案する。
パフォーマンス指標を超えた資格の必要性を強調する例として、AI開発を認定する上での課題を強調している。
論文 参考訳(メタデータ) (2024-09-13T09:27:59Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
政府はGenAIを規制し、イノベーションと安全性のバランスをとるという課題に、世界中で不満を抱いている。
Google、ウィスコンシン大学、マディソン大学、スタンフォード大学が共同で行ったワークショップは、GenAIのポリシーとテクノロジーのギャップを埋めることを目的としていた。
本稿では,技術進歩を妨げることなく,どのように規制を設計できるか,といった問題に対処するワークショップの議論を要約する。
論文 参考訳(メタデータ) (2024-05-21T20:30:01Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - The Necessity of AI Audit Standards Boards [0.0]
我々は、監査基準の作成は不十分であるだけでなく、無害で一貫性のない基準を広めることによって積極的に有害であると主張している。
代わりに、監査方法と標準を開発・更新する責任を持つAI監査基準委員会(AI Audit Standards Board)の設立を提案する。
論文 参考訳(メタデータ) (2024-04-11T15:08:24Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - No Trust without regulation! [0.0]
機械学習(ML)の性能の爆発と、その応用の可能性は、産業システムにおけるその利用を考慮し続けています。
安全と、その基準、規制、標準の問題については、いまだに片側に過度に残っています。
欧州委員会は、安全で信頼性があり、ヨーロッパの倫理的価値を尊重するAIベースのアプリケーションを統合するための、前進と強固なアプローチを構築するための基盤を築き上げた。
論文 参考訳(メタデータ) (2023-09-27T09:08:41Z) - Artificial Intelligence Security Competition (AISC) [52.20676747225118]
人工知能セキュリティコンペティション(AISC)は、Zhonguancun Laboratory、China Industrial Control Systems Cyber Emergency Response Team、Institute for Artificial Intelligence、清華大学、RealAIによって組織された。
コンテストはディープフェイクセキュリティコンペティション、自律運転セキュリティコンペティション、顔認識セキュリティコンペティションの3つのトラックで構成されている。
本報告では,これらの3トラックの競合ルールと,各トラックの上位チームのソリューションについて紹介する。
論文 参考訳(メタデータ) (2022-12-07T02:45:27Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。