論文の概要: Analyzing the temporal dynamics of linguistic features contained in misinformation
- arxiv url: http://arxiv.org/abs/2503.04786v2
- Date: Mon, 10 Mar 2025 01:43:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:40:19.038344
- Title: Analyzing the temporal dynamics of linguistic features contained in misinformation
- Title(参考訳): 誤情報に含まれる言語的特徴の時間的ダイナミクスの解析
- Authors: Erik J Schlicht,
- Abstract要約: 本研究では,2010年から2024年にかけてのPoitiFact文の解析に自然言語処理を用いる。
その結果,PolititiFact文では,文の感情が時間とともに著しく低下し,概して否定的な傾向がみられた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Consumption of misinformation can lead to negative consequences that impact the individual and society. To help mitigate the influence of misinformation on human beliefs, algorithmic labels providing context about content accuracy and source reliability have been developed. Since the linguistic features used by algorithms to estimate information accuracy can change across time, it is important to understand their temporal dynamics. As a result, this study uses natural language processing to analyze PolitiFact statements spanning between 2010 and 2024 to quantify how the sources and linguistic features of misinformation change between five-year time periods. The results show that statement sentiment has decreased significantly over time, reflecting a generally more negative tone in PolitiFact statements. Moreover, statements associated with misinformation realize significantly lower sentiment than accurate information. Additional analysis shows that recent time periods are dominated by sources from online social networks and other digital forums, such as blogs and viral images, that contain high levels of misinformation containing negative sentiment. In contrast, most statements during early time periods are attributed to individual sources (i.e., politicians) that are relatively balanced in accuracy ratings and contain statements with neutral or positive sentiment. Named-entity recognition was used to identify that presidential incumbents and candidates are relatively more prevalent in statements containing misinformation, while US states tend to be present in accurate information. Finally, entity labels associated with people and organizations are more common in misinformation, while accurate statements are more likely to contain numeric entity labels, such as percentages and dates.
- Abstract(参考訳): 誤報の消費は個人や社会に悪影響を及ぼす。
ヒトの信念に対する誤情報の影響を軽減するため、コンテンツ精度とソース信頼性に関する文脈を提供するアルゴリズムラベルが開発された。
アルゴリズムが情報精度を推定するために使用する言語的特徴は時間とともに変化するため、時間的ダイナミクスを理解することが重要である。
その結果,2010年から2024年にかけてのPoitiFact文の自然言語処理を用いて,5年間の誤情報発生源と言語的特徴の定量化を行った。
その結果,PolititiFact文では,文の感情が時間とともに著しく低下し,概して否定的な傾向がみられた。
さらに、誤報に関連する言明は、正確な情報よりも感情が著しく低いことを認識している。
さらなる分析によると、最近の期間は、オンラインソーシャルネットワークやブログやバイラル画像など、ネガティブな感情を含む高いレベルの誤情報を含む他のデジタルフォーラムの情報源によって支配されている。
対照的に、初期の期間のほとんどの声明は、比較的正確な評価でバランスが取れ、中立的あるいは肯定的な感情を持つ声明を含む個々の情報源(すなわち政治家)に起因している。
名前付き親密性認識は、大統領の現職者や候補者が、偽情報を含む声明で比較的多いのに対して、アメリカの州は正確な情報で存在している傾向にあることを識別するために使用された。
最後に、人や組織に関連するエンティティラベルは誤報で一般的であるが、正確なステートメントは、パーセンテージや日付などの数値的なエンティティラベルを含むことが多い。
関連論文リスト
- Characteristics of Political Misinformation Over the Past Decade [0.0]
本稿は、自然言語処理を用いて、12年間にわたる政治的誤報の共通の特徴を見出す。
その結果,近年は誤報が飛躍的に増加しており,テキストや画像の一次情報モダリティを持つソースから情報を共有する傾向が強まっていることが示唆された。
誤報を表す文には、正確な情報よりも否定的な感情が含まれていることが判明した。
論文 参考訳(メタデータ) (2024-11-09T09:12:39Z) - Locating Information Gaps and Narrative Inconsistencies Across Languages: A Case Study of LGBT People Portrayals on Wikipedia [49.80565462746646]
我々は,情報ギャップと矛盾を事実レベルで特定するための,効率的かつ信頼性の高い手法であるInfoGap法を紹介した。
我々は、LGBTの人々の描写を分析してInfoGapを評価し、英語、ロシア語、フランス語のウィキペディアの2.7Kの伝記ページを解析した。
論文 参考訳(メタデータ) (2024-10-05T20:40:49Z) - Understanding Position Bias Effects on Fairness in Social Multi-Document Summarization [1.9950682531209158]
3つの言語コミュニティからのつぶやきを要約する際の入力文書におけるグループ順序付けの効果について検討する。
以上の結果から,社会的多文書要約では位置バイアスが異なることが示唆された。
論文 参考訳(メタデータ) (2024-05-03T00:19:31Z) - Correcting misinformation on social media with a large language model [14.69780455372507]
現実世界の誤報は、しばしばマルチモーダルであり、因果関係を混同するような様々な戦術で誤解を招くことがある。
このような誤報は、特にソーシャルメディアにおいて、ひどく過小評価され、対処が困難であり、様々な社会的ドメインに害を与えている。
本稿では,最新の情報へのアクセスと信頼性を付加したLCMであるMUSEを提案する。
論文 参考訳(メタデータ) (2024-03-17T10:59:09Z) - Quantifying the redundancy between prosody and text [67.07817268372743]
我々は大きな言語モデルを用いて、韻律と単語自体の間にどれだけの情報が冗長であるかを推定する。
単語が持つ情報と韻律情報の間には,複数の韻律的特徴にまたがる高い冗長性が存在する。
それでも、韻律的特徴はテキストから完全には予測できないことが観察され、韻律は単語の上下に情報を運ぶことが示唆された。
論文 参考訳(メタデータ) (2023-11-28T21:15:24Z) - Lost in Translation -- Multilingual Misinformation and its Evolution [52.07628580627591]
本稿では,95言語にまたがる25万以上のファクトチェックの分析を通じて,多言語誤報の頻度とダイナミクスについて検討する。
誤報のクレームの大部分は1回だけ事実チェックされているが、21,000件以上のクレームに対応する11.7%は複数回チェックされている。
誤情報拡散のプロキシとしてファクトチェックを用いると、言語境界を越えて繰り返し主張する主張の33%が見つかる。
論文 参考訳(メタデータ) (2023-10-27T12:21:55Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
この研究は、COVID-19トピックに関するGab内のインタラクションパターンの特徴を提供する。
疑わしい、信頼できるコンテンツに対する社会的反応には、統計的に強い違いはない。
本研究は,協調した不正確な行動の理解と情報操作の早期警戒に関する知見を提供する。
論文 参考訳(メタデータ) (2020-06-03T11:34:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。