論文の概要: Framing the Game: How Context Shapes LLM Decision-Making
- arxiv url: http://arxiv.org/abs/2503.04840v1
- Date: Wed, 05 Mar 2025 17:03:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:23:56.401006
- Title: Framing the Game: How Context Shapes LLM Decision-Making
- Title(参考訳): ゲームのフレイミング: LLMの意思決定をどう形作るか
- Authors: Isaac Robinson, John Burden,
- Abstract要約: 大規模言語モデル(LLM)は、意思決定をサポートするために、さまざまなコンテキストにまたがってデプロイされるようになっている。
既存の評価は遅延モデル能力を効果的に調査するが、コンテキストフレーミングが合理的な意思決定に与える影響をしばしば見落としている。
本稿では,重要な特徴にまたがって評価インスタンスを体系的に変化させる新しい評価フレームワークを導入し,非常に多様なシナリオを生成するためのウィグレットを手続き的に生成する。
- 参考スコア(独自算出の注目度): 6.844612005679165
- License:
- Abstract: Large Language Models (LLMs) are increasingly deployed across diverse contexts to support decision-making. While existing evaluations effectively probe latent model capabilities, they often overlook the impact of context framing on perceived rational decision-making. In this study, we introduce a novel evaluation framework that systematically varies evaluation instances across key features and procedurally generates vignettes to create highly varied scenarios. By analyzing decision-making patterns across different contexts with the same underlying game structure, we uncover significant contextual variability in LLM responses. Our findings demonstrate that this variability is largely predictable yet highly sensitive to framing effects. Our results underscore the need for dynamic, context-aware evaluation methodologies for real-world deployments.
- Abstract(参考訳): 大規模言語モデル(LLM)は、意思決定をサポートするために、さまざまなコンテキストにまたがってデプロイされるようになっている。
既存の評価は遅延モデル能力を効果的に調査するが、コンテキストフレーミングが合理的な意思決定に与える影響をしばしば見落としている。
本研究では,重要な特徴にまたがって評価インスタンスを体系的に変化させる新しい評価フレームワークを導入し,非常に多様なシナリオを生成するために,ビグネットを手続き的に生成する。
異なるコンテキスト間の意思決定パターンを同じゲーム構造で解析することにより,LLM応答における有意な文脈変動を明らかにする。
この変動は予測可能であるが, フレーミング効果に非常に敏感であることがわかった。
この結果から,実環境における動的文脈対応評価手法の必要性が浮き彫りとなった。
関連論文リスト
- Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
本稿では,大規模言語モデル(LLM)を評価するためのベンチマークフレームワークを提案する。
生成エージェントシミュレーションを統合して、情報抽出、コンテキスト認識、適応エンゲージメントといった重要次元のパフォーマンスを評価する。
その結果,不明瞭な応答を扱う場合,適応戦略によりデータの抽出精度が向上することが示唆された。
論文 参考訳(メタデータ) (2025-02-04T15:47:47Z) - Beyond Metrics: A Critical Analysis of the Variability in Large Language Model Evaluation Frameworks [3.773596042872403]
大規模言語モデル(LLM)は進化を続けており、堅牢で標準化された評価ベンチマークの必要性が最重要である。
さまざまなフレームワークがこの分野への注目すべき貢献として現れ、包括的な評価テストとベンチマークを提供している。
本稿では,これらの評価手法の探索と批判的分析を行い,その強度,限界,および自然言語処理における最先端の進展に対する影響について述べる。
論文 参考訳(メタデータ) (2024-07-29T03:37:14Z) - Evaluating the Efficacy of Foundational Models: Advancing Benchmarking Practices to Enhance Fine-Tuning Decision-Making [1.3812010983144802]
本研究は,サイバーセキュリティ,医療,金融など多種多様な分野にわたる言語モデル(LLM)を評価する。
その結果,モデルサイズと推論に用いるプロンプトの種類は応答長と品質に大きく影響した。
論文 参考訳(メタデータ) (2024-06-25T20:52:31Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - Can Large Language Models Understand Context? [17.196362853457412]
本稿では,生成モデルの評価に適合する既存のデータセットを適応させることにより,文脈理解ベンチマークを提案する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが明らかとなった。
LLM圧縮は研究と実世界のアプリケーションの両方において重要度が高くなっているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
論文 参考訳(メタデータ) (2024-02-01T18:55:29Z) - A Reference Framework for Variability Management of Software Product
Lines [5.1868909177638125]
ソフトウェア製品ラインエンジニアリング(SPLE)における変数管理(VM)は、資産の再利用とカスタマイズを可能にする抽象化として導入された。
この研究は、定性メタ合成を用いた既存のVMアプローチの比較とコントラストを示す。
論文 参考訳(メタデータ) (2023-06-06T15:38:31Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
我々は、ブロックMDPにインスパイアされた堅牢な状態抽象化を実現するために、HiP-MDP設定からの共通構造の概念を活用する。
マルチタスク強化学習 (MTRL) とメタ強化学習 (Meta-RL) の両方のための新しいフレームワークのインスタンス化を導出する。
論文 参考訳(メタデータ) (2020-07-14T17:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。