Exceptional Topology on Nonorientable Manifolds
- URL: http://arxiv.org/abs/2503.04889v1
- Date: Thu, 06 Mar 2025 19:00:00 GMT
- Title: Exceptional Topology on Nonorientable Manifolds
- Authors: J. Lukas K. König, Kang Yang, André Grossi Fonseca, Sachin Vaidya, Marin Soljačić, Emil J. Bergholtz,
- Abstract summary: We classify gapped and gapless phases of non-Hermitian band structures on two-dimensional nonorientable parameter spaces.<n>For gapped phases, we find that nonorientable spaces provide a natural setting for exploring fundamental structural problems in braid group theory.
- Score: 2.740285431994955
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We classify gapped and gapless phases of non-Hermitian band structures on two-dimensional nonorientable parameter spaces. Such spaces arise in a wide range of physical systems in the presence of non-symmorphic parameter space symmetries. For gapped phases, we find that nonorientable spaces provide a natural setting for exploring fundamental structural problems in braid group theory, such as torsion and conjugacy. Gapless phases, which host exceptional points (EPs), explicitly violate the fermion doubling theorem, even in two-band models. We demonstrate that EPs traversing the nonorientable parameter space exhibit non-Abelian charge inversion. These braided phases and their transitions leave distinct signatures in the form of bulk Fermi arc degeneracies, offering a concrete route toward experimental realization and verification.
Related papers
- Equivariant Parameter Families of Spin Chains: A Discrete MPS Formulation [0.0]
We analyze topological phase transitions and higher Berry curvature in one-dimensional quantum spin systems.<n>We derive a fixed-point formula for the higher Berry invariant in the case where the symmetry action has isolated fixed points.<n>This reveals that the phase transition point between Haldane and trivial phases acts as a monopole-like defect where higher Berry curvature emanates.
arXiv Detail & Related papers (2025-07-26T12:36:55Z) - Topological crystals and soliton lattices in a Gross-Neveu model with Hilbert-space fragmentation [41.94295877935867]
We explore the finite-density phase diagram of the single-flavour Gross-Neveu-Wilson (GNW) model.<n>We find a sequence of inhomogeneous ground states that arise through a real-space version of the mechanism of Hilbert-space fragmentation.
arXiv Detail & Related papers (2025-06-23T14:19:35Z) - Non-Hermitian topology and skin modes in the continuum via parametric processes [44.99833362998488]
We show that Hermitian, nonlocal parametric pairing processes can induce non-Hermitian topology and skin modes.<n>Our model, stabilized by local dissipation, reveals exceptional points that spawn a tilted diabolical line in the dispersion.
arXiv Detail & Related papers (2025-05-05T16:38:20Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)<n>Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.<n>These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.<n>We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Topological, multi-mode amplification induced by non-reciprocal, long-range dissipative couplings [41.94295877935867]
We show the emergence of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of the bosonic chain with a chiral, multi-mode channel.
We also show how these couplings can also stabilize topological amplifying phases in the presence of local parametric drivings.
arXiv Detail & Related papers (2024-05-16T15:16:33Z) - Topological characterization of special edge modes from the winding of
relative phase [0.0]
Inversion or chiral symmetry broken SSH model is an example of a system where one-sided edge state with finite energy appears at one end of the open chain.
We introduce a concept of relative phase between the components of a two-component spinor and define a winding number by the change of this relative phase over the one-dimensional Brillouin zone.
We extend this analysis to a two dimensional case where we characterize the non-trivial phase, hosting gapped one-sided edge mode, by the winding in relative phase only along a certain axis in the Brillouin zone.
arXiv Detail & Related papers (2023-06-13T19:43:04Z) - Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac
string phase [0.0]
Topological phases of matter span a wide area of research shaping fundamental pursuits and offering promise for future applications.
The past two years have witnessed the rise of novel multi-gap dependent topological states.
We report on uncharted anomalous phases and properties that can only arise in out-of-equilibrium Floquet settings.
arXiv Detail & Related papers (2022-08-26T18:00:03Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Direct Measurement of Topological Properties of an Exceptional Parabola [3.349873063778719]
Non-Hermitian systems can produce branch singularities known as exceptional points (EPs)
EP trajectory endows the parameter space with a non-trivial fundamental group consisting of two non-homotopic classes of loops.
Our findings shed light on exotic non-Hermitian topology and provide a route for the experimental characterization of non-Hermitian topological invariants.
arXiv Detail & Related papers (2020-10-20T08:20:22Z) - Intrinsically Gapless Topological Phases [0.0]
Topology in quantum matter is typically associated with gapped phases.
Intrinsically gapless SPT phases have no gapped counterpart.
On-site symmetries act in an anomalous fashion at low energies.
arXiv Detail & Related papers (2020-08-15T03:37:05Z) - $\mathbb{Z}_2$-projective translational symmetry protected topological
phases [0.2578242050187029]
In the presence of a gauge field, spatial symmetries will be projectively represented.
Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
arXiv Detail & Related papers (2020-07-01T16:02:54Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.