Beyond-mean-field phases of rotating dipolar condensates
- URL: http://arxiv.org/abs/2503.04890v1
- Date: Thu, 06 Mar 2025 19:00:00 GMT
- Title: Beyond-mean-field phases of rotating dipolar condensates
- Authors: Paolo Molignini,
- Abstract summary: Rotating dipolar Bose-Einstein condensates exhibit rich physics due to the interplay of long-range interactions and rotation.<n>We employ a numerically exact multiconfigurational approach to study finite-sized dipolar condensates.<n>We reveal novel vortex structures, rotating cluster states, and strong fragmentation effects, demonstrating that beyond-mean-field correlations remain prominent even in larger systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rotating dipolar Bose-Einstein condensates exhibit rich physics due to the interplay of long-range interactions and rotation, leading to unconventional vortex structures and strongly correlated phases. While most studies rely on mean-field approaches, these fail to capture quantum correlations that become significant at high rotation speeds and strong interactions. In this study, we go beyond the mean-field description by employing a numerically exact multiconfigurational approach to study finite-sized dipolar condensates. We reveal novel vortex structures, rotating cluster states, and strong fragmentation effects, demonstrating that beyond-mean-field correlations remain prominent even in larger systems. By quantifying deviations from mean-field theory, we provide a predictive framework for analyzing experiments and exploring emergent quantum phases, with implications for both the fundamental theory of ultracold gases and the quantum simulation of correlated superfluid systems like in neutron stars.
Related papers
- Realization of strongly-interacting Meissner phases in large bosonic flux ladders [36.136619420474766]
We experimentally realize the strongly-interacting Mott-Meissner phase in large-scale bosonic flux ladders with 48 sites at half filling.<n>Our results demonstrate the feasibility of scaling periodically driven quantum systems to large, strongly correlated phases.
arXiv Detail & Related papers (2024-12-12T17:27:49Z) - Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons [0.0]
We study the dynamics of a $nu=1/3$ Laughlin state in a single-mode cavity with finite electric field gradients.
We find that the topological signatures of the FQH state remain robust against the non-local modulated cavity vacuum fluctuations.
By exploring the low-energy excited spectrum inside the FQH phase, we identify a new neutral quasiparticle, the graviton-polariton.
arXiv Detail & Related papers (2024-05-20T18:00:36Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Berry Phase and Topology in Ultrastrongly Coupled Quantum Light-Matter
Systems [0.0]
We develop a faithful and efficient theoretical framework to analyze quantum geometry and topology in materials ultrastrongly coupled to cavity electromagnetic fields in two dimensions.
We show the unitary mapping between the low-energy effective theory of strongly coupled light-matter systems and the Haldane honeycomb model.
arXiv Detail & Related papers (2022-09-03T08:20:53Z) - Higher-order mean-field theory of chiral waveguide QED [0.0]
Waveguide QED with cold atoms provides a potent platform for the study of non-equilibrium, many-body, and open-system quantum dynamics.
We apply an improved mean-field theory based on higher-order cumulant expansions to describe the experimentally relevant, but theoretically elusive, regime of weak coupling.
Our approach allows to quantify the trade-off between anti-bunching and output power in previously inaccessible parameter regimes.
arXiv Detail & Related papers (2022-07-21T12:22:41Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.