AI-driven Prediction of Insulin Resistance in Normal Populations: Comparing Models and Criteria
- URL: http://arxiv.org/abs/2503.05119v1
- Date: Fri, 07 Mar 2025 03:32:52 GMT
- Title: AI-driven Prediction of Insulin Resistance in Normal Populations: Comparing Models and Criteria
- Authors: Weihao Gao, Zhuo Deng, Zheng Gong, Ziyi Jiang, Lan Ma,
- Abstract summary: Insulin resistance (IR) is a key precursor to diabetes and a significant risk factor for cardiovascular disease.<n>We developed a simple AI model using only fasting blood glucose to predict IR in non-diabetic populations.<n>Data from the NHANES (1999-2020) and CHARLS studies were used for model training and validation.<n>CatBoost algorithm achieved AUC values of 0.8596 (HOMA-IR) and 0.7777 (TyG index) in NHANES, with an external AUC of 0.7442 for TyG.<n>For METS-IR prediction, the model achieved AUC values of 0.9731 (internal
- Score: 12.96699656980563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insulin resistance (IR) is a key precursor to diabetes and a significant risk factor for cardiovascular disease. Traditional IR assessment methods require multiple blood tests. We developed a simple AI model using only fasting blood glucose to predict IR in non-diabetic populations. Data from the NHANES (1999-2020) and CHARLS (2015) studies were used for model training and validation. Input features included age, gender, height, weight, blood pressure, waist circumference, and fasting blood glucose. The CatBoost algorithm achieved AUC values of 0.8596 (HOMA-IR) and 0.7777 (TyG index) in NHANES, with an external AUC of 0.7442 for TyG. For METS-IR prediction, the model achieved AUC values of 0.9731 (internal) and 0.9591 (external), with RMSE values of 3.2643 (internal) and 3.057 (external). SHAP analysis highlighted waist circumference as a key predictor of IR. This AI model offers a minimally invasive and effective tool for IR prediction, supporting early diabetes and cardiovascular disease prevention.
Related papers
- Enhancing Bagging Ensemble Regression with Data Integration for Time Series-Based Diabetes Prediction [0.5399800035598186]
This study begins with a data engineering process to integrate diabetes-related datasets from 2011 to 2021.<n>We then introduce an enhanced bagging ensemble regression model (EBMBag+) for time series forecasting to predict diabetes prevalence across U.S. cities.<n>The experimental results demonstrate that EBMBag+ achieved the best performance, with an MAE of 0.41, RMSE of 0.53, MAPE of 4.01, and an R2 of 0.9.
arXiv Detail & Related papers (2025-06-11T04:21:50Z) - Insulin Resistance Prediction From Wearables and Routine Blood Biomarkers [44.735350554750916]
We remotely recruited the largest dataset to date across the US to study insulin resistance.<n>Deep neural network models were developed to predict insulin resistance based on readily available digital and blood biomarkers.<n>Model showed 93% sensitivity and 95% adjusted specificity in obese and sedentary participants.
arXiv Detail & Related papers (2025-04-30T16:10:20Z) - CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
arXiv Detail & Related papers (2024-11-10T02:40:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients [0.0]
This study aimed to develop a supervised learning model to predict the risk of developing albuminuria in T2DM patients.
It consisted of 10 attributes as features and 1 attribute as the target (albuminuria)
It achieved accuracy and f1-score values as high as 0.74 and 0.75, respectively, making it suitable for screening purposes in predicting albuminuria in T2DM.
arXiv Detail & Related papers (2023-09-28T08:41:12Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Using Machine Learning Techniques to Identify Key Risk Factors for
Diabetes and Undiagnosed Diabetes [0.0]
This paper reviews a wide selection of machine learning models built to predict the presence of diabetes and the presence of undiagnosed diabetes.
The most relevant variables of the best performing models are then compared.
Blood osmolality, family history, the prevalance of various compounds, and hypertension are key indicators for all diabetes risk.
arXiv Detail & Related papers (2021-05-19T20:02:35Z) - Predicting Risk of Developing Diabetic Retinopathy using Deep Learning [6.200560025035929]
Risk stratification for the development of diabetic retinopathy may help optimize screening intervals to reduce costs while improving vision outcomes.
We created and validated two versions of a deep learning system (DLS) to predict the development of mild-worse ("Mild+") DR in diabetic patients undergoing DR screening.
arXiv Detail & Related papers (2020-08-10T19:07:22Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z) - Instant automatic diagnosis of diabetic retinopathy [36.2143325805188]
OphtAI relies on ensembles of convolutional neural networks trained to recognize eye laterality, detect referable DR and assess DR severity.
System was developed and validated using a dataset of 763,848 images from 164,660 screening procedures.
OphtAI is safer, faster and more comprehensive than the only AI system authorized by the FDA so far.
arXiv Detail & Related papers (2019-06-12T08:34:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.