論文の概要: MGSR: 2D/3D Mutual-boosted Gaussian Splatting for High-fidelity Surface Reconstruction under Various Light Conditions
- arxiv url: http://arxiv.org/abs/2503.05182v1
- Date: Fri, 07 Mar 2025 07:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 15:56:43.739218
- Title: MGSR: 2D/3D Mutual-boosted Gaussian Splatting for High-fidelity Surface Reconstruction under Various Light Conditions
- Title(参考訳): MGSR : 各種光条件下での高忠実表面再構成のための2D/3D多層型ガウススメッティング
- Authors: Qingyuan Zhou, Yuehu Gong, Weidong Yang, Jiaze Li, Yeqi Luo, Baixin Xu, Shuhao Li, Ben Fei, Ying He,
- Abstract要約: 新しいビュー合成(NVS)と表面再構成(SR)は3次元ガウススプラッティングにおける必須課題である(3D-GS)
表示品質と3次元再構成精度を両立させる表面再構成用2D/3D多孔型ガウススプラッティングであるMGSRを提案する。
我々はMGSRをオブジェクトレベルとシーンレベルの両方において、多種多様な合成および実世界のデータセットで評価し、レンダリングおよび表面再構成において高い性能を示す。
- 参考スコア(独自算出の注目度): 6.4367384921445545
- License:
- Abstract: Novel view synthesis (NVS) and surface reconstruction (SR) are essential tasks in 3D Gaussian Splatting (3D-GS). Despite recent progress, these tasks are often addressed independently, with GS-based rendering methods struggling under diverse light conditions and failing to produce accurate surfaces, while GS-based reconstruction methods frequently compromise rendering quality. This raises a central question: must rendering and reconstruction always involve a trade-off? To address this, we propose MGSR, a 2D/3D Mutual-boosted Gaussian splatting for Surface Reconstruction that enhances both rendering quality and 3D reconstruction accuracy. MGSR introduces two branches--one based on 2D-GS and the other on 3D-GS. The 2D-GS branch excels in surface reconstruction, providing precise geometry information to the 3D-GS branch. Leveraging this geometry, the 3D-GS branch employs a geometry-guided illumination decomposition module that captures reflected and transmitted components, enabling realistic rendering under varied light conditions. Using the transmitted component as supervision, the 2D-GS branch also achieves high-fidelity surface reconstruction. Throughout the optimization process, the 2D-GS and 3D-GS branches undergo alternating optimization, providing mutual supervision. Prior to this, each branch completes an independent warm-up phase, with an early stopping strategy implemented to reduce computational costs. We evaluate MGSR on a diverse set of synthetic and real-world datasets, at both object and scene levels, demonstrating strong performance in rendering and surface reconstruction.
- Abstract(参考訳): 新たなビュー合成(NVS)と表面再構成(SR)は3Dガウススプラッティング(3D-GS)において必須の課題である。
近年の進歩にもかかわらず、これらのタスクは独立して対処されることが多く、GSベースのレンダリング手法は様々な光条件下で苦労し、正確な表面を生成できない。
レンダリングと再構築は常にトレードオフを伴わなければならないのか?
そこで本研究では,表面再構成のための2D/3D多重ブースト型ガウススプラッティングであるMGSRを提案し,レンダリング品質と3D再構成精度を両立させる。
MGSRは2D-GSと3D-GSの2つのブランチを導入している。
2D-GSブランチは表面再構成に優れ、3D-GSブランチに正確な幾何学情報を提供する。
この幾何学を活用して、3D-GSブランチは、反射および透過されたコンポーネントをキャプチャする幾何学誘導照明分解モジュールを使用し、様々な光条件下で現実的なレンダリングを可能にする。
2D-GSブランチは、送信されたコンポーネントを監督として、高忠実な表面再構成も実現している。
最適化プロセスを通じて、2D-GSと3D-GSのブランチは相互に監督する相互最適化を行っている。
これに先立ち、各ブランチは独立したウォームアップフェーズを完了し、計算コストを削減するために早期停止戦略を実装した。
我々はMGSRをオブジェクトレベルとシーンレベルの両方において、多種多様な合成および実世界のデータセットで評価し、レンダリングおよび表面再構成において高い性能を示す。
関連論文リスト
- Advancing Dense Endoscopic Reconstruction with Gaussian Splatting-driven Surface Normal-aware Tracking and Mapping [12.027762278121052]
Endo-2DTAMは2次元ガウススプラッティング(2DGS)を用いたリアルタイム内視鏡SLAMシステムである
私たちのロバストなトラッキングモジュールは、ポイントツーポイントとポイントツープレーン距離のメトリクスを組み合わせています。
マッピングモジュールは, 通常の整合性および深さ歪みを利用して表面再構成品質を向上する。
論文 参考訳(メタデータ) (2025-01-31T17:15:34Z) - 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction [3.8879997968084137]
高忠実度屋内シーン再構築のための2次元ガウス平滑化手法である2DGS-Roomを導入する。
我々は2次元ガウス分布を制御するためにシード誘導機構を用い、適応的な成長と刈り取り機構によって動的に最適化されたシードポイントの密度を推定した。
幾何的精度をさらに向上するために,単眼深度と通常の先行値を組み合わせて,細部と無テクスチャ領域の制約をそれぞれ与える。
論文 参考訳(メタデータ) (2024-12-04T16:17:47Z) - G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction [71.08607897266045]
3D Gaussian Splatting (3DGS) は新規なビュー合成において有望な性能を示した。
本研究は,大規模な景観表面再構築の課題に取り組むための最初の試みである。
3DGSを用いた大規模シーンのための高品質な表面再構成手法であるGigaGSを提案する。
論文 参考訳(メタデータ) (2024-09-10T17:51:39Z) - Optimizing 3D Gaussian Splatting for Sparse Viewpoint Scene Reconstruction [11.840097269724792]
3D Gaussian Splatting (3DGS)は3Dシーン表現の有望なアプローチとして登場し、Neural Radiance Fields (NeRF)と比較して計算オーバーヘッドの低減を実現している。
SVS-GSは,3次元ガウス平滑化フィルタを統合して人工物を抑制する,スパースビューポイントシーン再構築のための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-09-05T03:18:04Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。