論文の概要: 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction
- arxiv url: http://arxiv.org/abs/2412.03428v1
- Date: Wed, 04 Dec 2024 16:17:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:07:59.602972
- Title: 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction
- Title(参考訳): 2DGS-Room:高密度屋内シーン再構築のための幾何学的制約付きシードガイド付き2Dガウススプラッティング
- Authors: Wanting Zhang, Haodong Xiang, Zhichao Liao, Xiansong Lai, Xinghui Li, Long Zeng,
- Abstract要約: 高忠実度屋内シーン再構築のための2次元ガウス平滑化手法である2DGS-Roomを導入する。
我々は2次元ガウス分布を制御するためにシード誘導機構を用い、適応的な成長と刈り取り機構によって動的に最適化されたシードポイントの密度を推定した。
幾何的精度をさらに向上するために,単眼深度と通常の先行値を組み合わせて,細部と無テクスチャ領域の制約をそれぞれ与える。
- 参考スコア(独自算出の注目度): 3.8879997968084137
- License:
- Abstract: The reconstruction of indoor scenes remains challenging due to the inherent complexity of spatial structures and the prevalence of textureless regions. Recent advancements in 3D Gaussian Splatting have improved novel view synthesis with accelerated processing but have yet to deliver comparable performance in surface reconstruction. In this paper, we introduce 2DGS-Room, a novel method leveraging 2D Gaussian Splatting for high-fidelity indoor scene reconstruction. Specifically, we employ a seed-guided mechanism to control the distribution of 2D Gaussians, with the density of seed points dynamically optimized through adaptive growth and pruning mechanisms. To further improve geometric accuracy, we incorporate monocular depth and normal priors to provide constraints for details and textureless regions respectively. Additionally, multi-view consistency constraints are employed to mitigate artifacts and further enhance reconstruction quality. Extensive experiments on ScanNet and ScanNet++ datasets demonstrate that our method achieves state-of-the-art performance in indoor scene reconstruction.
- Abstract(参考訳): 室内の景観の復元は、空間構造の複雑さと無テクスチャ領域の出現により、依然として困難である。
近年の3次元ガウススプラッティングの進歩は, 高速化処理による新規なビュー合成を改善しているが, 表面再構成において同等の性能は得られていない。
本稿では,高忠実度屋内シーン再構築のための2次元ガウス平滑化手法である2DGS-Roomを紹介する。
具体的には,2次元ガウス分布を制御するためのシード誘導機構を用いて,適応的な成長と刈り取り機構によって動的に最適化されたシードポイントの密度を推定する。
幾何的精度をさらに向上するために,単眼深度と通常の先行値を組み合わせて,細部と無テクスチャ領域の制約をそれぞれ与える。
さらに、アーティファクトを緩和し、再構築品質をさらに向上するために、マルチビューの一貫性の制約が採用されている。
ScanNetとScanNet++データセットの大規模な実験により,室内のシーン再構成における最先端性能が得られた。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
本稿では,自己教師型ガウススプラッティング表現であるDeSiRe-GSについて述べる。
複雑な駆動シナリオにおいて、効率的な静的・動的分解と高忠実な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-11-18T05:49:16Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - Space-time 2D Gaussian Splatting for Accurate Surface Reconstruction under Complex Dynamic Scenes [30.32214593068206]
複雑なシーンにおける動的内容と閉塞に対処する時空間2次元ガウス散乱法を提案する。
具体的には、動的シーンにおける幾何学的品質を改善するために、標準2次元ガウススプラットを学習し、これらの2次元ガウススプラットを変形させる。
また, 構成不透明化戦略を導入し, 閉塞領域の表面の回復をさらに抑制する。
実世界のスパースビュービデオデータセットとモノクロダイナミックデータセットの実験は、再構築が最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2024-09-27T15:50:36Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
ニューラルネットワークSDFと3DGSを統合した統合フレームワークを提案する。
このフレームワークには学習可能なニューラルネットワークSDFフィールドが組み込まれており、ガウスの密度化と刈り取りをガイドしている。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z) - DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing [19.437747560051566]
カラー画像の勾配に基づく適応的な深度損失を提案し、様々なベースライン上での深度推定と新しいビュー合成結果を改善した。
我々の単純かつ効果的な正則化技術はガウス表現からの直接メッシュ抽出を可能にし、屋内シーンのより物理的に正確な再構築を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:00:31Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
本稿では、ビュー依存色とビュー非依存色を分離する2段階のトレーニングプロセスを提案し、さらに2つの新しい一貫性制約を活用して、余分な事前処理を必要とせず、詳細な再構成性能を向上させる。
合成および実世界のデータセットの実験は、事前推定誤差から干渉を減らす能力を示している。
論文 参考訳(メタデータ) (2023-09-18T13:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。