論文の概要: Harnessing Quantum Dynamics for Robust and Scalable Quantum Extreme Learning Machines
- arxiv url: http://arxiv.org/abs/2503.05535v3
- Date: Tue, 26 Aug 2025 06:50:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-27 15:23:52.269362
- Title: Harnessing Quantum Dynamics for Robust and Scalable Quantum Extreme Learning Machines
- Title(参考訳): ロバストかつスケーラブルな量子エクストリーム学習マシンのための高調波量子ダイナミクス
- Authors: Payal D. Solanki, Anh Pham,
- Abstract要約: テンソルネットワーク法が量子系を効率的にシミュレートし, エンタングルメントを制御し, 指数集中を緩和する方法を示す。
この結果から,量子力学の正確なシミュレーションは強力な機械学習性能には必要ないことが示唆された。
- 参考スコア(独自算出の注目度): 0.9546137427039093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Extreme Learning Machine (QELM) is an emerging hybrid quantum machine learning framework that leverages quantum system dynamics to enhance classical models. However, QELM can suffer from the exponential concentration problem, where excessive entanglement reduces model expressivity. In this work, we gain insight into this challenge and demonstrate how tensor network methods specifically, the Time Dependent Variational Principle (TDVP) with Matrix Product States (MPS) can efficiently simulate quantum systems while controlling entanglement and mitigating exponential concentration. Using numerical experiments on the Modified National Institute of Standards and Technology (MNIST) dataset, we show that time-evolving an MPS system modeled as a chain of Rydberg atoms produces high-quality data embeddings with low classical computational overhead. Our findings indicate that exact simulation of quantum dynamics is not necessary for strong machine learning performance; even approximate quantum embeddings can yield competitive results. Furthermore, we observe that both increased disorder in the quantum state achieved by tuning Hamiltonian parameters and careful control of entanglement directly correlate with improved model accuracy, highlighting the importance of these factors in optimizing QELM performance.
- Abstract(参考訳): 量子エクストリーム・ラーニング・マシン(Quantum Extreme Learning Machine, QELM)は、量子システムのダイナミクスを利用して古典的なモデルを強化するハイブリッドな量子機械学習フレームワークである。
しかし、QELMは指数集中問題に悩まされ、過剰な絡み合いによってモデル表現性が低下する。
本研究では,この課題に対する洞察を得,特にテンソルネットワーク手法,マトリックス生成状態(MPS)を用いた時間依存変動原理(TDVP)が,量子系を効率よくシミュレーションし,エンタングルメントを制御し指数集中を緩和する方法を実証する。
修正国立標準技術研究所(MNIST)データセットの数値実験を用いて、ライドバーグ原子の連鎖としてモデル化されたMPSシステムが、古典的な計算オーバーヘッドの少ない高品質なデータ埋め込みを生成することを示す。
この結果から,量子力学の正確なシミュレーションは強力な機械学習性能には必要ないことが示唆された。
さらに,ハミルトニアンパラメータのチューニングによる量子状態の混乱の増大と絡み合いの注意深く制御はモデル精度の向上と相関し,これらの要因がQELM性能の最適化において重要であることを明らかにする。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
本研究では,量子コンピューティングと機械学習(ML)の交わりについて検討する。
小型量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
本稿では、量子コンピューティングの歴史を調査し、既存のQMLアルゴリズムを検証し、QMLアルゴリズムのシミュレーションを作成するための簡易な手順を提案する。
従来の機械学習と量子機械学習の両方のアプローチを用いて、データセット上でシミュレーションを行う。
論文 参考訳(メタデータ) (2023-11-17T07:33:42Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum Machine Learning For Classical Data [0.0]
量子コンピューティングと教師付き機械学習アルゴリズムの交差について研究する。
特に,教師付き機械学習アルゴリズムの高速化に量子コンピュータがどの程度使えるかを検討する。
論文 参考訳(メタデータ) (2021-05-08T12:11:44Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
本稿では,古典的あるいは量子的データに対するハイブリッド量子古典モデルの高速プロトタイピングのためのオープンソースライブラリであるQuantum (TFQ)を紹介する。
本稿では,メタラーニング,階層学習,ハミルトン学習,サーマル状態のサンプリング,変分量子固有解法,量子位相遷移の分類,生成的敵ネットワーク,強化学習など,高度な量子学習タスクにTFQを適用する方法を紹介する。
論文 参考訳(メタデータ) (2020-03-06T01:31:43Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。