論文の概要: Inference Scaling Reshapes AI Governance
- arxiv url: http://arxiv.org/abs/2503.05705v1
- Date: Wed, 12 Feb 2025 22:04:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 10:18:21.644592
- Title: Inference Scaling Reshapes AI Governance
- Title(参考訳): 推論スケーリングがAIガバナンスに影響を及ぼす
- Authors: Toby Ord,
- Abstract要約: AIシステムの事前学習計算のスケールアップから推論計算のスケールアップへの移行は、AIガバナンスに大きな影響を与える可能性がある。
これらの効果の性質は、この新しい推論計算が主に外部展開中に使用されるか、あるいは研究室内でより複雑なトレーニングプログラムの一部として使用されるかに大きく依存する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The shift from scaling up the pre-training compute of AI systems to scaling up their inference compute may have profound effects on AI governance. The nature of these effects depends crucially on whether this new inference compute will primarily be used during external deployment or as part of a more complex training programme within the lab. Rapid scaling of inference-at-deployment would: lower the importance of open-weight models (and of securing the weights of closed models), reduce the impact of the first human-level models, change the business model for frontier AI, reduce the need for power-intense data centres, and derail the current paradigm of AI governance via training compute thresholds. Rapid scaling of inference-during-training would have more ambiguous effects that range from a revitalisation of pre-training scaling to a form of recursive self-improvement via iterated distillation and amplification.
- Abstract(参考訳): AIシステムの事前学習計算のスケールアップから推論計算のスケールアップへの移行は、AIガバナンスに大きな影響を与える可能性がある。
これらの効果の性質は、この新しい推論計算が主に外部展開中に使用されるか、あるいは研究室内でより複雑なトレーニングプログラムの一部として使用されるかに大きく依存する。
推論・アット・デプロイの迅速なスケーリング: オープンウェイトモデルの重要性(およびクローズドモデルの重み付け)の低減、最初の人間レベルのモデルの影響の低減、フロンティアAIのビジネスモデルの変更、パワーセンスデータセンターの必要性の低減、計算しきい値のトレーニングによるAIガバナンスの現在のパラダイムの脱線。
推論学習の急激なスケーリングは、事前学習のスケーリングの活性化から、反復蒸留と増幅による再帰的な自己改善の形式まで、よりあいまいな効果を持つ。
関連論文リスト
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
既存のリウェイト戦略は主にグループレベルのデータの重要性に焦点を当てている。
動的・インスタンスレベルのデータ再重み付けのための新しいアルゴリズムを提案する。
当社のフレームワークでは,冗長データや非形式データを優先的に再重み付けする戦略を考案することが可能です。
論文 参考訳(メタデータ) (2025-02-10T17:57:15Z) - Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在の技術のほとんどは、自己回帰エントロピーモデルを備えたVAEベースで、デコードされた因果コンテキストを利用してRD性能を向上する。
本稿では,提案した因果文脈調整損失を用いて因果文脈を的確に調整する方法を初めて検討する。
論文 参考訳(メタデータ) (2024-10-07T09:08:32Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Training dynamic models using early exits for automatic speech
recognition on resource-constrained devices [15.879328412777008]
初期のアーキテクチャは、そのサイズとアーキテクチャを様々なレベルの計算リソースとASRパフォーマンス要求に適応できる動的モデルの開発を可能にする。
また,スクラッチからトレーニングした早期退避モデルは,エンコーダ層が少ない場合に性能を保ちつつ,単一退避モデルや事前学習モデルと比較してタスク精度が向上することを示した。
結果は、ASRモデルの早期アーキテクチャのトレーニングダイナミクスに関する洞察を与える。
論文 参考訳(メタデータ) (2023-09-18T07:45:16Z) - Harnessing the Power of Explanations for Incremental Training: A
LIME-Based Approach [6.244905619201076]
この研究では、モデル説明がフィードフォワードトレーニングにフィードバックされ、モデルをより一般化するのに役立つ。
このフレームワークは、シーケンシャルなテストセットのパフォーマンスを維持するために、Elastic Weight Consolidation (EWC)によるカスタム重み付き損失を取り入れている。
提案したカスタムトレーニング手順は、インクリメンタルラーニングセットアップのすべてのフェーズにおいて、0.5%から1.5%までの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2022-11-02T18:16:17Z) - Scaling Laws Beyond Backpropagation [64.0476282000118]
因果デコーダのみの変換器を効率的に訓練するための直接フィードバックアライメントの有効性について検討した。
DFAはバックプロパゲーションよりも効率的なスケーリングを提供していないことが分かりました。
論文 参考訳(メタデータ) (2022-10-26T10:09:14Z) - Self-Adaptive Training: Bridging the Supervised and Self-Supervised
Learning [16.765461276790944]
自己適応型トレーニングは、追加の計算コストを課すことなく、モデル予測によってトレーニングプロセスを動的にキャリブレーションし、強化する統一型トレーニングアルゴリズムです。
ランダムノイズや敵対的な例など、破損したトレーニングデータの深層ネットワークのトレーニングダイナミクスを分析します。
分析の結果, モデル予測はデータ中の有用な情報量を拡大することが可能であり, 強調ラベル情報がない場合にも広く発生することがわかった。
論文 参考訳(メタデータ) (2021-01-21T17:17:30Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。