論文の概要: Rethinking LLM Advancement: Compute-Dependent and Independent Paths to Progress
- arxiv url: http://arxiv.org/abs/2505.04075v2
- Date: Thu, 05 Jun 2025 17:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-07 00:22:22.444454
- Title: Rethinking LLM Advancement: Compute-Dependent and Independent Paths to Progress
- Title(参考訳): LLMの進歩を再考する - コンピュータ依存と独立性 - 進歩への道のり
- Authors: Jack Sanderson, Teddy Foley, Spencer Guo, Anqi Qu, Henry Josephson,
- Abstract要約: 本研究は,大規模言語モデルが,計算制約環境におけるアルゴリズム的革新によって進展するか否かを評価する。
本稿では,計算に依存しないイノベーションから高い計算量で不均質な利益をもたらす計算依存のイノベーションを区別する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.461430685627857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regulatory efforts to govern large language model (LLM) development have predominantly focused on restricting access to high-performance computational resources. This study evaluates the efficacy of such measures by examining whether LLM capabilities can advance through algorithmic innovation in compute-constrained environments. We propose a novel framework distinguishing compute-dependent innovations--which yield disproportionate benefits at high compute--from compute-independent innovations, which improve efficiency across compute scales. The impact is quantified using Compute-Equivalent Gain (CEG). Experimental validation with nanoGPT models confirms that compute-independent advancements yield significant performance gains (e.g., with combined CEG up to $3.5\times$) across the tested scales. In contrast, compute-dependent advancements were detrimental to performance at smaller experimental scales, but showed improved CEG (on par with the baseline) as model size increased, a trend consistent with their definition of yielding primary benefits at higher compute. Crucially, these findings indicate that restrictions on computational hardware, while potentially slowing LLM progress, are insufficient to prevent all capability gains driven by algorithmic advancements. We argue that effective AI oversight must therefore incorporate mechanisms for understanding, anticipating, and potentially guiding algorithmic research, moving beyond a singular focus on hardware. The proposed framework also serves as an analytical tool for forecasting AI progress.
- Abstract(参考訳): 大規模言語モデル(LLM)開発を管理するための規制努力は、主に高性能な計算資源へのアクセスを制限することに重点を置いている。
本研究では,LLMの能力が計算制約環境におけるアルゴリズム的革新によって向上するかどうかを検証し,その効果を評価する。
本稿では,計算に依存しないイノベーションから高い計算量で不均質な利益をもたらす計算依存のイノベーションを区別し,計算スケールの効率を向上する新しいフレームワークを提案する。
影響はCompute-Equivalent Gain (CEG) を用いて定量化される。
ナノGPTモデルによる実験的な検証により、計算非依存の進歩は、試験スケール間で大きな性能向上(例えば、CEGと組み合わせて最大3.5\times$)をもたらすことが確認された。
対照的に、計算依存の進歩はより小さな実験スケールでの性能に有害であるが、モデルサイズが大きくなるにつれてCEG(ベースラインと同等)が改善された。
これらの結果は、計算ハードウェアの制限は、LSMの進行を遅くする可能性があるが、アルゴリズムの進歩によって引き起こされるすべての能力向上を防ぐには不十分であることを示している。
したがって、効果的なAI監視は、ハードウェアにのみ焦点を絞ったアルゴリズム研究の理解、予測、そして潜在的指導のためのメカニズムを組み込まなければならない、と我々は主張する。
提案されたフレームワークは、AIの進捗を予測するための分析ツールとしても機能する。
関連論文リスト
- R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-スパース(R-Sparse)は、高度なLCMにおいて高い疎度を達成できる訓練不要なアクティベーション・スパシティ・アプローチである。
10種類のタスクにわたるLlama-2/3およびMistralモデルの実験は、R-Sparseが50%のモデルレベルの間隔で同等のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2025-04-28T03:30:32Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromorphic Computing [3.379854610429579]
Recurrent Large Language Models (R-LLM) は自己注意の複雑さを軽減するのに有効であることが証明されている。
ニューロモルフィックハードウェア上でのエネルギー効率を高めるために,R-LLMの活性化をスパースする,低コストでトレーニング不要なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-09T19:13:03Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
大言語モデル(LLMs)は人工知能(AI)の転換期を告げる
本稿では, LLM推論の運用効率と費用対効果を高める効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T22:50:02Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using
Mathematical Programming [2.898055875927704]
FPGAの近似演算子を合成するための,データ解析による数学的プログラミングに基づく手法を提案する。
具体的には、特徴量データの相関解析の結果に基づいて、混合整数の2次制約付きプログラムを定式化する。
従来の進化的アルゴリズムによる最適化と比較して,PPAとBEHAVの併用最適化において,ハイパーボリュームの最大21%の改善が報告されている。
論文 参考訳(メタデータ) (2023-09-23T18:23:54Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。