論文の概要: Rethinking LLM Advancement: Compute-Dependent and Independent Paths to Progress
- arxiv url: http://arxiv.org/abs/2505.04075v2
- Date: Thu, 05 Jun 2025 17:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-07 00:22:22.444454
- Title: Rethinking LLM Advancement: Compute-Dependent and Independent Paths to Progress
- Title(参考訳): LLMの進歩を再考する - コンピュータ依存と独立性 - 進歩への道のり
- Authors: Jack Sanderson, Teddy Foley, Spencer Guo, Anqi Qu, Henry Josephson,
- Abstract要約: 本研究は,大規模言語モデルが,計算制約環境におけるアルゴリズム的革新によって進展するか否かを評価する。
本稿では,計算に依存しないイノベーションから高い計算量で不均質な利益をもたらす計算依存のイノベーションを区別する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.461430685627857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regulatory efforts to govern large language model (LLM) development have predominantly focused on restricting access to high-performance computational resources. This study evaluates the efficacy of such measures by examining whether LLM capabilities can advance through algorithmic innovation in compute-constrained environments. We propose a novel framework distinguishing compute-dependent innovations--which yield disproportionate benefits at high compute--from compute-independent innovations, which improve efficiency across compute scales. The impact is quantified using Compute-Equivalent Gain (CEG). Experimental validation with nanoGPT models confirms that compute-independent advancements yield significant performance gains (e.g., with combined CEG up to $3.5\times$) across the tested scales. In contrast, compute-dependent advancements were detrimental to performance at smaller experimental scales, but showed improved CEG (on par with the baseline) as model size increased, a trend consistent with their definition of yielding primary benefits at higher compute. Crucially, these findings indicate that restrictions on computational hardware, while potentially slowing LLM progress, are insufficient to prevent all capability gains driven by algorithmic advancements. We argue that effective AI oversight must therefore incorporate mechanisms for understanding, anticipating, and potentially guiding algorithmic research, moving beyond a singular focus on hardware. The proposed framework also serves as an analytical tool for forecasting AI progress.
- Abstract(参考訳): 大規模言語モデル(LLM)開発を管理するための規制努力は、主に高性能な計算資源へのアクセスを制限することに重点を置いている。
本研究では,LLMの能力が計算制約環境におけるアルゴリズム的革新によって向上するかどうかを検証し,その効果を評価する。
本稿では,計算に依存しないイノベーションから高い計算量で不均質な利益をもたらす計算依存のイノベーションを区別し,計算スケールの効率を向上する新しいフレームワークを提案する。
影響はCompute-Equivalent Gain (CEG) を用いて定量化される。
ナノGPTモデルによる実験的な検証により、計算非依存の進歩は、試験スケール間で大きな性能向上(例えば、CEGと組み合わせて最大3.5\times$)をもたらすことが確認された。
対照的に、計算依存の進歩はより小さな実験スケールでの性能に有害であるが、モデルサイズが大きくなるにつれてCEG(ベースラインと同等)が改善された。
これらの結果は、計算ハードウェアの制限は、LSMの進行を遅くする可能性があるが、アルゴリズムの進歩によって引き起こされるすべての能力向上を防ぐには不十分であることを示している。
したがって、効果的なAI監視は、ハードウェアにのみ焦点を絞ったアルゴリズム研究の理解、予測、そして潜在的指導のためのメカニズムを組み込まなければならない、と我々は主張する。
提案されたフレームワークは、AIの進捗を予測するための分析ツールとしても機能する。
関連論文リスト
- Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization [48.91511514636768]
本稿では,外部制約から固有モデル能力へ推論長制御を変換するフレームワークであるLongth-Adaptive Policy Optimization (LAPO)を提案する。
LAPOは、2段階の強化学習プロセスを通じて適切な推論深度を理解することができる。
数学的推論ベンチマークの実験では、LAPOはトークンの使用量を最大40.9%削減し、精度は2.3%向上した。
論文 参考訳(メタデータ) (2025-07-21T16:14:41Z) - Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs [45.83245433138508]
大規模言語モデル(LLM)は、幅広いタスクを解くことができる汎用エージェントへと急速に進歩してきた。
彼らは、タスクの複雑さに関わらず、固定推論時間計算を適用し、しばしば難しいことを考えながら単純な問題を過小評価する。
本調査では, LLM推論の計算効率向上を目的とした, 効率的なテスト時間計算戦略の総合的なレビューを行う。
論文 参考訳(メタデータ) (2025-07-02T18:27:42Z) - DynScaling: Efficient Verifier-free Inference Scaling via Dynamic and Integrated Sampling [20.605487145370752]
推論時間スケーリングは、テスト時間計算の増大を通じて、大きな言語モデル(LLM)の性能向上に有効であることが証明されている。
しかし、実際的な応用は、外部検証への依存や、現実的な計算制約に対する最適化の欠如によってしばしば妨げられる。
我々はDynScalingを提案し、これらの制限を2つの主要なイノベーション、すなわち並列シーケンスサンプリング戦略と帯域幅に基づく動的予算配分フレームワークを通じて解決する。
論文 参考訳(メタデータ) (2025-06-19T05:40:54Z) - R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference [77.47238561728459]
R-スパース(R-Sparse)は、高度なLCMにおいて高い疎度を達成できる訓練不要なアクティベーション・スパシティ・アプローチである。
10種類のタスクにわたるLlama-2/3およびMistralモデルの実験は、R-Sparseが50%のモデルレベルの間隔で同等のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2025-04-28T03:30:32Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromorphic Computing [3.379854610429579]
Recurrent Large Language Models (R-LLM) は自己注意の複雑さを軽減するのに有効であることが証明されている。
ニューロモルフィックハードウェア上でのエネルギー効率を高めるために,R-LLMの活性化をスパースする,低コストでトレーニング不要なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-09T19:13:03Z) - Latenrgy: Model Agnostic Latency and Energy Consumption Prediction for Binary Classifiers [0.0]
機械学習システムは、科学分野や産業のイノベーションをますます加速させる。
しかし、特に推論の間、計算オーバーヘッドにおける課題はスケーラビリティと持続可能性を制限する。
この研究は、主に遅延とエネルギー消費に関する一般化予測技術が欠如していることから、文学における重要なギャップに対処する。
論文 参考訳(メタデータ) (2024-12-26T14:51:24Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
大言語モデル(LLMs)は人工知能(AI)の転換期を告げる
本稿では, LLM推論の運用効率と費用対効果を高める効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T22:50:02Z) - Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
強化学習の現実的な応用は、エージェントが複雑な高次元の観察を行う環境を含むことが多い。
本稿では,統計的・アルゴリズム的な観点から,textit General$ latent dynamicsの下での強化学習の課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T14:22:49Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Quantum Data Encoding: A Comparative Analysis of Classical-to-Quantum
Mapping Techniques and Their Impact on Machine Learning Accuracy [0.0]
本研究では,古典的機械学習(ML)アルゴリズムへの量子データ埋め込み技術の統合について検討する。
その結果,量子データの埋め込みは,分類精度とF1スコアの向上に寄与することが判明した。
論文 参考訳(メタデータ) (2023-11-17T08:00:08Z) - AxOMaP: Designing FPGA-based Approximate Arithmetic Operators using
Mathematical Programming [2.898055875927704]
FPGAの近似演算子を合成するための,データ解析による数学的プログラミングに基づく手法を提案する。
具体的には、特徴量データの相関解析の結果に基づいて、混合整数の2次制約付きプログラムを定式化する。
従来の進化的アルゴリズムによる最適化と比較して,PPAとBEHAVの併用最適化において,ハイパーボリュームの最大21%の改善が報告されている。
論文 参考訳(メタデータ) (2023-09-23T18:23:54Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。