論文の概要: Graph Masked Language Models
- arxiv url: http://arxiv.org/abs/2503.05763v1
- Date: Mon, 24 Feb 2025 07:44:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 09:17:32.005514
- Title: Graph Masked Language Models
- Title(参考訳): グラフマスキング言語モデル
- Authors: Aarush Sinha, OM Kumar CU,
- Abstract要約: ノード分類タスクに対して, TextbfGraph Masked Language Models (GMLM) を提案する。
提案手法は,その構造的重要性に基づいてノードを選択的にマスキングするテキストセマンティックマスキング戦略と,補間ノード表現を生成するテキストソフトマスキング機構という,2つの重要なイノベーションを導入する。
我々のデュアルブランチモデルアーキテクチャは、構造グラフ情報を多層融合ネットワークを介してコンテキスト埋め込みで融合する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Language Models (LMs) are integral to Natural Language Processing (NLP), yet their interaction with structured knowledge graphs (KGs) remains an open research challenge. While Graph Neural Networks (GNNs) excel at capturing graph structures, they struggle with textual feature representation compared to pretrained LMs. To bridge this gap, we propose \textbf{Graph Masked Language Models (GMLM)} for node classification tasks. Our approach introduces two key innovations: a \textit{semantic masking strategy} that selectively masks nodes based on their structural importance, ensuring critical graph components contribute effectively to learning, and a \textit{soft masking mechanism} that generates interpolated node representations, enabling smoother information retention and improved gradient flow. Our dual-branch model architecture fuses structural graph information with contextual embeddings via a multi-layer fusion network. Extensive experiments on six node classification benchmarks demonstrate that GMLM not only achieves state-of-the-art (SOTA) performance but also enhances robustness and stability across datasets.
- Abstract(参考訳): 言語モデル(LM)は自然言語処理(NLP)に不可欠なものであるが、構造化知識グラフ(KG)との相互作用は依然としてオープンな研究課題である。
グラフニューラルネットワーク(GNN)はグラフ構造を捉えるのに優れていますが、事前訓練されたLMに比べてテキストの特徴表現に苦労しています。
このギャップを埋めるために,ノード分類タスクのための GMLM (textbf{Graph Masked Language Models) を提案する。
提案手法では,ノードの構造的重要性に基づいてノードを選択的にマスキングする「textit{semantic masking strategy」と,補間ノード表現を生成する「textit{soft masking mechanism」の2つを導入し,よりスムーズな情報保持と勾配流の改善を実現した。
我々のデュアルブランチモデルアーキテクチャは、構造グラフ情報を多層融合ネットワークを介してコンテキスト埋め込みで融合する。
6つのノード分類ベンチマークの大規模な実験により、GMLMは最先端(SOTA)のパフォーマンスを達成するだけでなく、データセット間の堅牢性と安定性も向上することが示された。
関連論文リスト
- Deep Semantic Graph Learning via LLM based Node Enhancement [5.312946761836463]
大規模言語モデル(LLM)は、テキストセマンティクスを理解する上で優れた能力を示している。
本稿では,グラフトランスフォーマーアーキテクチャとLLM拡張ノード機能を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-11T21:55:46Z) - Bridging Large Language Models and Graph Structure Learning Models for Robust Representation Learning [22.993015048941444]
グラフ表現学習は現実世界のアプリケーションには不可欠だが、広範にわたるノイズに遭遇することが多い。
本稿では,事前学習された言語モデルとグラフ構造学習モデルの相補的な長所を統合するフレームワークであるLangGSLを紹介する。
論文 参考訳(メタデータ) (2024-10-15T22:43:32Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - Graph Language Models [18.75364157933661]
両アプローチの長所を統合し,その短所を緩和する新しいLM型であるグラフ言語モデル(GLM)を導入する。
我々はGLMのアーキテクチャを設計し、グラフバイアスを取り入れ、グラフ内の効果的な知識分布を促進する。
関係分類タスクに関する実証的な評価は、GLM埋め込みが、教師付きおよびゼロショット設定におけるLMベースラインとGNNベースベースラインの両方を上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-13T16:09:49Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。