Knowledge representation and scalable abstract reasoning for simulated democracy in Unity
- URL: http://arxiv.org/abs/2503.05783v1
- Date: Wed, 26 Feb 2025 21:03:02 GMT
- Title: Knowledge representation and scalable abstract reasoning for simulated democracy in Unity
- Authors: Eleftheria Katsiri, Alexandros Gazis, Angelos Protopapas,
- Abstract summary: We present a novel form of scalable knowledge representation about agents in a simulated democracy, e-polis.<n>Real users respond to social challenges associated with democratic institutions.<n>At the end of the game players vote on the Smart City that results from their collective choices.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel form of scalable knowledge representation about agents in a simulated democracy, e-polis, where real users respond to social challenges associated with democratic institutions, structured as Smart Spatial Types, a new type of Smart Building that changes architectural form according to the philosophical doctrine of a visitor. At the end of the game players vote on the Smart City that results from their collective choices. Our approach uses deductive systems in an unusual way: by integrating a model of democracy with a model of a Smart City we are able to prove quality aspects of the simulated democracy in different urban and social settings, while adding ease and flexibility to the development. Second, we can infer and reason with abstract knowledge, which is a limitation of the Unity platform; third, our system enables real-time decision-making and adaptation of the game flow based on the player's abstract state, paving the road to explainability. Scalability is achieved by maintaining a dual-layer knowledge representation mechanism for reasoning about the simulated democracy that functions in a similar way to a two-level cache. The lower layer knows about the current state of the game by continually processing a high rate of events produced by the in-built physics engine of the Unity platform, e.g., it knows of the position of a player in space, in terms of his coordinates x,y,z as well as their choices for each challenge. The higher layer knows of easily-retrievable, user-defined abstract knowledge about current and historical states, e.g., it knows of the political doctrine of a Smart Spatial Type, a player's philosophical doctrine, and the collective philosophical doctrine of a community players with respect to current social issues.
Related papers
- LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation [60.920536939067524]
We introduce LogiCity, the first simulator based on customizable first-order logic (FOL) for an urban-like environment with multiple dynamic agents.
LogiCity models diverse urban elements using semantic and spatial concepts, such as IsAmbulance(X) and IsClose(X, Y)
Key feature of LogiCity is its support for user-configurable abstractions, enabling customizable simulation complexities for logical reasoning.
arXiv Detail & Related papers (2024-11-01T17:59:46Z) - Unbounded: A Generative Infinite Game of Character Life Simulation [68.37260000219479]
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models.
We leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models.
arXiv Detail & Related papers (2024-10-24T17:59:31Z) - EmbodiedCity: A Benchmark Platform for Embodied Agent in Real-world City Environment [38.14321677323052]
Embodied artificial intelligence emphasizes the role of an agent's body in generating human-like behaviors.
In this paper, we construct a benchmark platform for embodied intelligence evaluation in real-world city environments.
arXiv Detail & Related papers (2024-10-12T17:49:26Z) - Unleashing Artificial Cognition: Integrating Multiple AI Systems [2.402818676870194]
We present an innovative fusion of language models and query analysis techniques to unlock cognition in artificial intelligence.
The introduced open-source AI system seamlessly integrates a Chess engine with a language model, enabling it to predict moves and provide strategic explanations.
Our system holds promise for diverse applications, from medical diagnostics to financial forecasting.
arXiv Detail & Related papers (2024-08-09T07:36:30Z) - CivRealm: A Learning and Reasoning Odyssey in Civilization for
Decision-Making Agents [63.79739920174535]
We introduce CivRealm, an environment inspired by the Civilization game.
CivRealm stands as a unique learning and reasoning challenge for decision-making agents.
arXiv Detail & Related papers (2024-01-19T09:14:11Z) - E-polis: A serious game for the gamification of sociological surveys [55.2480439325792]
E-polis is a serious game that gamifies a sociological survey for studying young people's opinions regarding their ideal society.
The game can be used to collect data on a variety of topics, such as social justice, and economic development, or to promote civic engagement.
arXiv Detail & Related papers (2023-11-01T18:25:13Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - Learning Neural-Symbolic Descriptive Planning Models via Cube-Space
Priors: The Voyage Home (to STRIPS) [13.141761152863868]
We show that our neuro-symbolic architecture is trained end-to-end to produce a succinct and effective discrete state transition model from images alone.
Our target representation is already in a form that off-the-shelf solvers can consume, and opens the door to the rich array of modern search capabilities.
arXiv Detail & Related papers (2020-04-27T15:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.