論文の概要: KnowLogic: A Benchmark for Commonsense Reasoning via Knowledge-Driven Data Synthesis
- arxiv url: http://arxiv.org/abs/2503.06218v1
- Date: Sat, 08 Mar 2025 13:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:04.217566
- Title: KnowLogic: A Benchmark for Commonsense Reasoning via Knowledge-Driven Data Synthesis
- Title(参考訳): KnowLogic:知識駆動データ合成による常識推論のベンチマーク
- Authors: Weidong Zhan, Yue Wang, Nan Hu, Liming Xiao, Jingyuan Ma, Yuhang Qin, Zheng Li, Yixin Yang, Sirui Deng, Jinkun Ding, Wenhan Ma, Rui Li, Weilin Luo, Qun Liu, Zhifang Sui,
- Abstract要約: 知識駆動型合成データ戦略によって生成されたベンチマークであるKnowLogicを紹介する。
KnowLogicは多様な常識知識、もっともらしいシナリオ、そして様々なタイプの論理的推論を統合している。
私たちのベンチマークは、様々なドメインで3000のバイリンガル(中国語と英語)質問で構成されています。
- 参考スコア(独自算出の注目度): 33.72114830484246
- License:
- Abstract: Current evaluations of commonsense reasoning in LLMs are hindered by the scarcity of natural language corpora with structured annotations for reasoning tasks. To address this, we introduce KnowLogic, a benchmark generated through a knowledge-driven synthetic data strategy. KnowLogic integrates diverse commonsense knowledge, plausible scenarios, and various types of logical reasoning. One of the key advantages of KnowLogic is its adjustable difficulty levels, allowing for flexible control over question complexity. It also includes fine-grained labels for in-depth evaluation of LLMs' reasoning abilities across multiple dimensions. Our benchmark consists of 3,000 bilingual (Chinese and English) questions across various domains, and presents significant challenges for current LLMs, with the highest-performing model achieving only 69.57\%. Our analysis highlights common errors, such as misunderstandings of low-frequency commonsense, logical inconsistencies, and overthinking. This approach, along with our benchmark, provides a valuable tool for assessing and enhancing LLMs' commonsense reasoning capabilities and can be applied to a wide range of knowledge domains.
- Abstract(参考訳): LLMにおけるコモンセンス推論の現在の評価は、推論タスクのための構造化アノテーションを用いた自然言語コーパスの不足によって妨げられている。
そこで我々は知識駆動型合成データ戦略によって生成されたベンチマークであるKnowLogicを紹介した。
KnowLogicは多様な常識知識、もっともらしいシナリオ、そして様々なタイプの論理的推論を統合している。
KnowLogicの重要な利点の1つは、その調整可能な難易度であり、質問の複雑さを柔軟に制御できる。
また、複数の次元にわたるLSMの推論能力の詳細な評価のためのきめ細かいラベルも含まれている。
我々のベンチマークは、様々な領域にまたがる3000のバイリンガル(中国語と英語)の質問で構成されており、最も高い性能のモデルは69.57\%である。
我々の分析では、低周波の常識の誤解、論理的矛盾、過度な考えなど、よくある誤りを強調している。
このアプローチは、我々のベンチマークとともに、LLMのコモンセンス推論能力を評価し、拡張するための貴重なツールを提供し、幅広い知識領域に適用することができる。
関連論文リスト
- CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにまたがる印象的な機能を示している。
本稿では,LLMの複雑な論理的推論能力の体系的評価について述べる。
LLMは一般世界の知識の推論に優れるが、専門分野固有の知識では重大な課題に直面している。
論文 参考訳(メタデータ) (2024-07-30T05:40:32Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
RUPBenchは,多種多様な推論タスクにわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
我々のベンチマークには15の推論データセットが組み込まれており、コモンセンス、算術、論理、知識集約推論に分類されている。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
論文 参考訳(メタデータ) (2024-06-16T17:26:44Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
因果関係を理解する能力は、大言語モデル(LLM)の出力説明と反実的推論の能力に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2024-04-09T14:40:08Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
大規模言語モデル(LLM)の知識文書は、時代遅れや誤った知識のためにLLMの記憶と矛盾する可能性がある。
我々は,知識紛争解決のための新しいデータセットKNOTを構築した。
論文 参考訳(メタデータ) (2024-04-04T16:40:11Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
イベント関係抽出は、綿密な意味的理解と厳密な論理的推論を必要とする課題である。
本稿では,イベント関連論理の理解と適用におけるLLMの能力について,詳細な調査を行う。
本研究により,LLMは論理的に一貫した推論子ではないことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-13T14:53:06Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。