論文の概要: Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
- arxiv url: http://arxiv.org/abs/2503.06366v1
- Date: Sun, 09 Mar 2025 00:11:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:32.376915
- Title: Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
- Title(参考訳): Algebraic Combinatoricsと機械学習: 純粋数学における研究レベルの導出能力をキャプチャするデータセットのスイート
- Authors: Herman Chau, Helen Jenne, Davis Brown, Jesse He, Mark Raugas, Sara Billey, Henry Kvinge,
- Abstract要約: 私たちはAlgebraic Combinatorics dataset Repository (ACD Repo)という新しいデータセットのコレクションを紹介します。
各データセットには、オープンな研究レベルの質問と、サンプルの大規模なコレクションが含まれている。
機械学習モデルを適用する方法の異なる9つのデータセットについて説明する。
- 参考スコア(独自算出の注目度): 4.229995708813431
- License:
- Abstract: With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
- Abstract(参考訳): 近年のAIシステム能力の劇的な増加に伴い、推論が重く、定量的なタスク、特に数学に機械学習を活用することへの関心が高まっている。
高校、大学院、大学院レベルで数学を捉えるリソースはたくさんありますが、オープンな問題に取り組んでいるプロの数学者が直面する困難さとオープンな終わりのレベルに合わせたリソースは、はるかに少ないのです。
これを解決するために,代数的組合せ論における基礎的結果と開問題を表すAlgebraic Combinatorics Dataset Repository (ACD Repo) という,抽象代数学から生じる離散構造を研究する数学のサブフィールドを導入した。
データセットコレクションのさらなる差別化は、それが導出プロセスを目指しているという事実です。
各データセットには、オープンな研究レベルの質問と、予想を生成すべきサンプル(場合によっては最大1000万件まで)の大規模なコレクションが含まれている。
9つのデータセットをすべて記述し、機械学習モデルをそれらに適用する方法(例えば、狭いモデルでトレーニングし、解釈可能性分析やLCMによるプログラム合成を行うなど)を説明し、このようなデータセットの設計に関わるいくつかの課題について議論する。
関連論文リスト
- MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
数学的推論ステップ拡張のための新しいフレームワークであるMathFimerを紹介する。
我々は、慎重にキュレートしたNuminaMath-FIMデータセットに基づいて、特殊モデルMathFimer-7Bを開発した。
次に、これらのモデルを適用して、解鎖に詳細な中間ステップを挿入することで、既存の数学的推論データセットを強化する。
論文 参考訳(メタデータ) (2025-02-17T11:22:24Z) - Large Language Models for Mathematical Analysis [3.7325315394927023]
この研究は、数学的推論における重要なギャップに対処し、信頼できるAIの進歩に寄与する。
DEMI-MathAnalysisデータセットを開発した。
また,LLMの問題解決能力を高めるためのガイドフレームワークも設計した。
論文 参考訳(メタデータ) (2024-12-28T20:37:55Z) - Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning [85.635988711588]
我々は,大規模言語モデルの能力向上には,数学的データセットの設計におけるパラダイムシフトが必要であると論じる。
1949年にG. P'olyaが導入した「動機付き証明」の概念は、より良い証明学習信号を提供するデータセットの青写真として機能する。
数学データセットに特化して設計されたアンケートでは、クリエーターにデータセットを含めるよう促します。
論文 参考訳(メタデータ) (2024-12-19T18:55:17Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
大規模言語モデル(LLM)は、非常に高度な自然言語理解を持ち、強力な問題解決能力を示した。
本稿では,新たに開発された"MathOdyssey"データセットを用いて,LLMの数学的問題解決能力について検討する。
論文 参考訳(メタデータ) (2024-06-26T13:02:35Z) - Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models [62.815222721144636]
我々は、LLaVA-1.5ベースのMathV360Kで微調整されたモデルであるMath-LLaVAを紹介する。
この手法はLLaVA-1.5のマルチモーダル数学的推論能力を著しく改善する。
Math-LLaVAは、MMMUベンチマークで大幅に改善された一般化性を示している。
論文 参考訳(メタデータ) (2024-06-25T05:43:21Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
我々は,11番目と12番目の標準数学 NCERT 教科書から得られた数学データセット "MathQuest" を紹介する。
LLaMA-2, WizardMath, MAmmoTHの3つの大きな言語モデルを用いた微調整実験を行った。
この3つのモデルのうち,MAmmoTH-13Bが最も熟練したモデルとして登場し,提示された数理問題の解法において,最高レベルの能力を達成した。
論文 参考訳(メタデータ) (2024-04-19T08:45:42Z) - Evaluating LLMs' Mathematical Reasoning in Financial Document Question
Answering [53.56653281752486]
本研究では,大言語モデルによる4つの財務質問応答データセットの数学的推論について検討する。
数理推論のステップの数が増えるにつれて、テーブルの複雑さや性能の変化に対する感度に焦点をあてる。
半構造化文書に適した新しいプロンプト技術を導入する。
論文 参考訳(メタデータ) (2024-02-17T05:10:18Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
本稿では,対話型質問応答における数値推論の連鎖を研究するために,新しい大規模データセットConvFinQAを提案する。
我々のデータセットは、現実世界の会話において、長距離で複雑な数値推論パスをモデル化する上で大きな課題となる。
論文 参考訳(メタデータ) (2022-10-07T23:48:50Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。