論文の概要: MetaXCR: Reinforcement-Based Meta-Transfer Learning for Cross-Lingual Commonsense Reasoning
- arxiv url: http://arxiv.org/abs/2503.06531v1
- Date: Sun, 09 Mar 2025 09:27:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:03.169823
- Title: MetaXCR: Reinforcement-Based Meta-Transfer Learning for Cross-Lingual Commonsense Reasoning
- Title(参考訳): MetaXCR: 言語間コモンセンス推論のための強化型メタトランスファー学習
- Authors: Jie He, Yu Fu,
- Abstract要約: クロスランガルな低リソースのCommonsense Reasoningは、さまざまなイングランドのデータセットを活用して、ラベル付きデータに制限のある新たな言語間のターゲットデータセットへの適応を支援することを目的としている。
本稿では,多言語で低リソースなCommonsense Reasoning(MetaXCR)のためのマルチソースアダプタを提案する。
- 参考スコア(独自算出の注目度): 6.414022634745093
- License:
- Abstract: Commonsense reasoning (CR) has been studied in many pieces of domain and has achieved great progress with the aid of large datasets. Unfortunately, most existing CR datasets are built in English, so most previous work focus on English. Furthermore, as the annotation of commonsense reasoning is costly, it is impossible to build a large dataset for every novel task. Therefore, there are growing appeals for Cross-lingual Low-Resource Commonsense Reasoning, which aims to leverage diverse existed English datasets to help the model adapt to new cross-lingual target datasets with limited labeled data. In this paper, we propose a multi-source adapter for cross-lingual low-resource Commonsense Reasoning (MetaXCR). In this framework, we first extend meta learning by incorporating multiple training datasets to learn a generalized task adapters across different tasks. Then, we further introduce a reinforcement-based sampling strategy to help the model sample the source task that is the most helpful to the target task. Finally, we introduce two types of cross-lingual meta-adaption methods to enhance the performance of models on target languages. Extensive experiments demonstrate MetaXCR is superior over state-of-the-arts, while being trained with fewer parameters than other work.
- Abstract(参考訳): コモンセンス推論(CR)は多くの領域で研究され、大規模なデータセットの助けを借りて大きな進歩を遂げた。
残念ながら、既存のほとんどのCRデータセットは英語で構築されているため、以前の作業は英語に重点を置いていた。
さらに、コモンセンス推論のアノテーションはコストがかかるため、新しいタスクごとに大規模なデータセットを構築することは不可能である。
そのため、多種多様な英語データセットを活用して、ラベル付きデータに制限された新たな言語間ターゲットデータセットへの適応を支援することを目的とした、クロスランガルな低リソースコモンセンス推論へのアピールが増えている。
本稿では,多言語で低リソースなCommonsense Reasoning (MetaXCR) のためのマルチソースアダプタを提案する。
このフレームワークでは、まず複数のトレーニングデータセットを組み込んでメタ学習を拡張し、さまざまなタスクにまたがる汎用タスクアダプタを学習する。
さらに,モデルが対象タスクに最も有用なソースタスクのサンプリングを支援するために,強化に基づくサンプリング戦略を導入する。
最後に、対象言語におけるモデルの性能を高めるために、言語間メタ適応法を2種類導入する。
大規模な実験では、MetaXCRは最先端技術よりも優れており、他の作業よりも少ないパラメータでトレーニングされている。
関連論文リスト
- CL2CM: Improving Cross-Lingual Cross-Modal Retrieval via Cross-Lingual
Knowledge Transfer [23.58317401302547]
本稿では,言語間移動を用いた視覚と対象言語間のアライメントを改善する汎用フレームワークCL2CMを提案する。
提案手法は,Multi30KとMSCOCOの2つの多言語画像テキストデータセットと,ビデオテキストデータセットVATEXである。
論文 参考訳(メタデータ) (2023-12-14T14:29:53Z) - Lost in Translation, Found in Spans: Identifying Claims in Multilingual
Social Media [40.26888469822391]
クレームスパン識別(CSI)は、ファクトチェックパイプラインの重要なステップである。
ジャーナリストや人間のファクトチェッカーにとって重要な問題だが、いまだに過小評価されている問題である。
我々は、多くのソーシャルメディアプラットフォームから5つのインド語と英語で収集された7Kの現実世界のクレームからなる、新しいデータセットX-CLAIMを作成します。
論文 参考訳(メタデータ) (2023-10-27T15:28:12Z) - MetaXLR -- Mixed Language Meta Representation Transformation for
Low-resource Cross-lingual Learning based on Multi-Armed Bandit [0.0]
データ駆動方式で選択した複数のソース言語を利用する拡張アプローチを提案する。
我々は,同じ量のデータを使用しながら,非常に低リソース言語に対するNERタスクにおける技術結果の状態を達成した。
論文 参考訳(メタデータ) (2023-05-31T18:22:33Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
データ不足は、多言語NLPシステムの開発において重要な問題である。
我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。
XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
論文 参考訳(メタデータ) (2023-05-19T18:00:03Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC)は、大規模で高品質なERCトレーニングデータの提供によって、大幅に進歩した。
このような急速な進歩と広範囲の応用にもかかわらず、英語のような高リソース言語以外の言語のデータセットは依然として不足している。
多言語環境において,既存の高品質抽出読解データセットをモデル化し,XLTT(Cross-Lingual Transposition ReThinking)モデルを提案する。
論文 参考訳(メタデータ) (2021-07-11T09:35:16Z) - MetaXL: Meta Representation Transformation for Low-resource
Cross-lingual Learning [91.5426763812547]
言語間移動学習は低リソース言語のための機能的NLPシステムを構築するための最も効果的な方法の1つである。
MetaXLは、メタラーニングベースのフレームワークで、表現を補助言語からターゲット言語にジャッジに変換することを学ぶ。
論文 参考訳(メタデータ) (2021-04-16T06:15:52Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training,
Understanding and Generation [100.09099800591822]
XGLUEは、大規模な言語間の事前トレーニングモデルのトレーニングに使用できる、新しいベンチマークデータセットである。
XGLUEは、自然言語理解と生成シナリオの両方をカバーする、11の多様化されたタスクを提供する。
論文 参考訳(メタデータ) (2020-04-03T07:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。