論文の概要: SHIP: A Shapelet-based Approach for Interpretable Patient-Ventilator Asynchrony Detection
- arxiv url: http://arxiv.org/abs/2503.06571v2
- Date: Thu, 13 Mar 2025 02:01:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 12:09:29.759780
- Title: SHIP: A Shapelet-based Approach for Interpretable Patient-Ventilator Asynchrony Detection
- Title(参考訳): シェープレットを用いた患者換気器同時検出のためのShip
- Authors: Xuan-May Le, Ling Luo, Uwe Aickelin, Minh-Tuan Tran, David Berlowitz, Mark Howard,
- Abstract要約: PVA(Patent-ventilator asynchrony)は、機械的換気の際の一般的な問題であり、最大85%の患者に影響を及ぼす。
PVA検出のためのシェープレットベースアプローチ ShiP を提案する。
本手法は,シェープレットに基づくデータ拡張によるデータセットの不均衡に対処し,より効果的な分類のために,シェープレットプールを構築してデータセットを変換する。
- 参考スコア(独自算出の注目度): 3.580340090571342
- License:
- Abstract: Patient-ventilator asynchrony (PVA) is a common and critical issue during mechanical ventilation, affecting up to 85% of patients. PVA can result in clinical complications such as discomfort, sleep disruption, and potentially more severe conditions like ventilator-induced lung injury and diaphragm dysfunction. Traditional PVA management, which relies on manual adjustments by healthcare providers, is often inadequate due to delays and errors. While various computational methods, including rule-based, statistical, and deep learning approaches, have been developed to detect PVA events, they face challenges related to dataset imbalances and lack of interpretability. In this work, we propose a shapelet-based approach SHIP for PVA detection, utilizing shapelets - discriminative subsequences in time-series data - to enhance detection accuracy and interpretability. Our method addresses dataset imbalances through shapelet-based data augmentation and constructs a shapelet pool to transform the dataset for more effective classification. The combined shapelet and statistical features are then used in a classifier to identify PVA events. Experimental results on medical datasets show that SHIP significantly improves PVA detection while providing interpretable insights into model decisions.
- Abstract(参考訳): PVA(Patent-ventilator asynchrony)は、機械的換気の際の一般的な問題であり、最大85%の患者に影響を及ぼす。
PVAは不快感、睡眠障害、人工呼吸器による肺損傷や横隔膜機能不全などの重篤な症状などの臨床的合併症を引き起こすことがある。
医療提供者による手動調整に依存する従来のPVA管理は、遅延やエラーのため、しばしば不十分である。
PVAイベントを検出するためのルールベース、統計学、ディープラーニングなど、様々な計算手法が開発されているが、データセットの不均衡や解釈可能性の欠如に関連する課題に直面している。
本研究では,PVA検出のためのシェープレットベースアプローチ ShiP を提案する。
本手法は,シェープレットに基づくデータ拡張によるデータセットの不均衡に対処し,より効果的な分類のために,シェープレットプールを構築してデータセットを変換する。
シェープレットと統計的特徴の組み合わせは、PVAイベントを識別するために分類器で使用される。
医学データセットによる実験結果から、Shipはモデル決定に対する解釈可能な洞察を提供しながら、PVA検出を大幅に改善することが示された。
関連論文リスト
- Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
我々は、新たに構築された心臓シミュレーションの大規模なデータセットに基づいて、無傷神経後部推定器を訓練する。
シミュレーションデータと実世界の測定値との整合性を改善するために,要素モデリング効果を取り入れた。
提案するフレームワークは,実世界のデータに対する予測能力を向上するために,インバイブなデータソースをさらに統合することができる。
論文 参考訳(メタデータ) (2024-12-23T13:05:17Z) - Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
深層学習に基づく医療画像セグメンテーションモデルは、様々な医療センターに展開すると、しばしば性能劣化に直面します。
本稿では,クリニカル修正予測のほとんど見落とされがちな可能性を生かした,新規なHuman-in-the-loop TTAフレームワークを提案する。
我々のフレームワークは、ドメインの格差によって生じる予測のばらつきを減らし、分散損失を想定する。
論文 参考訳(メタデータ) (2024-05-14T02:02:15Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
論文 参考訳(メタデータ) (2023-12-07T11:03:42Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
データから酸素抽出率(OEF)と脱酸素血液量(DBV)をより明瞭に決定する。
既存の推論手法では、DBVを過大評価しながら非常にノイズの多い、過小評価されたEFマップが得られる傾向にある。
本研究は, OEFとDBVの可算分布を推定できる確率論的機械学習手法について述べる。
論文 参考訳(メタデータ) (2022-03-11T10:47:16Z) - Causal Effect Variational Autoencoder with Uniform Treatment [50.895390968371665]
因果効果変動オートエンコーダ(CEVAE)をトレーニングし、観察処理データから結果を予測する。
均一処理変分オートエンコーダ (UTVAE) は, 重要サンプリングを用いて均一な処理分布を訓練する。
論文 参考訳(メタデータ) (2021-11-16T17:40:57Z) - A Model-Based Approach to Synthetic Data Set Generation for
Patient-Ventilator Waveforms for Machine Learning and Educational Use [0.0]
機械学習と教育利用のための合成データセットを生成するモデルベースのアプローチを提案する。
文献中の測定結果から得られた9種類の患者原型を用いて合成データセットを生成した。
論文 参考訳(メタデータ) (2021-03-29T15:10:17Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
本稿では,逐次変分オートエンコーダ(vaes)を用いた異種データ型とバースト欠落データを用いた医療データ記録のモデル化を提案する。
GP-VAEモデルより計算複雑性が低く,両指標を用いた場合,Shi-VAEが最高の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-03-12T10:59:26Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。