論文の概要: Gaussian RBFNet: Gaussian Radial Basis Functions for Fast and Accurate Representation and Reconstruction of Neural Fields
- arxiv url: http://arxiv.org/abs/2503.06762v1
- Date: Sun, 09 Mar 2025 20:36:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:48:29.350844
- Title: Gaussian RBFNet: Gaussian Radial Basis Functions for Fast and Accurate Representation and Reconstruction of Neural Fields
- Title(参考訳): Gaussian RBFNet:ニューラルフィールドの高速かつ正確な表現と再構成のためのガウスラジアル基底関数
- Authors: Abdelaziz Bouzidi, Hamid Laga, Hazem Wannous,
- Abstract要約: 本稿では、従来のニューロンをラジアル基底核に置き換えることで、2D(RGB画像)、3D(幾何学)、5D(放射場)信号の高精度な表現を実現することができることを示す。
提案手法は,15秒未満で3次元図形表現を,15分未満で3次元図形表現を学習できることを実証する。
- 参考スコア(独自算出の注目度): 6.3869568420241745
- License:
- Abstract: Neural fields such as DeepSDF and Neural Radiance Fields have recently revolutionized novel-view synthesis and 3D reconstruction from RGB images and videos. However, achieving high-quality representation, reconstruction, and rendering requires deep neural networks, which are slow to train and evaluate. Although several acceleration techniques have been proposed, they often trade off speed for memory. Gaussian splatting-based methods, on the other hand, accelerate the rendering time but remain costly in terms of training speed and memory needed to store the parameters of a large number of Gaussians. In this paper, we introduce a novel neural representation that is fast, both at training and inference times, and lightweight. Our key observation is that the neurons used in traditional MLPs perform simple computations (a dot product followed by ReLU activation) and thus one needs to use either wide and deep MLPs or high-resolution and high-dimensional feature grids to parameterize complex nonlinear functions. We show in this paper that by replacing traditional neurons with Radial Basis Function (RBF) kernels, one can achieve highly accurate representation of 2D (RGB images), 3D (geometry), and 5D (radiance fields) signals with just a single layer of such neurons. The representation is highly parallelizable, operates on low-resolution feature grids, and is compact and memory-efficient. We demonstrate that the proposed novel representation can be trained for 3D geometry representation in less than 15 seconds and for novel view synthesis in less than 15 mins. At runtime, it can synthesize novel views at more than 60 fps without sacrificing quality.
- Abstract(参考訳): DeepSDFやNeural Radiance Fieldsといったニューラルフィールドは、最近、RGB画像やビデオからの新規ビュー合成と3D再構成に革命をもたらした。
しかし、高品質な表現、再構築、レンダリングを実現するには、訓練と評価が遅いディープニューラルネットワークが必要である。
いくつかの加速技術が提案されているが、メモリの速度をトレードオフすることが多い。
一方、ガウスのスプレイティングに基づく手法はレンダリング時間を高速化するが、多数のガウスのパラメータを保存するのに必要なトレーニング速度とメモリの面ではコストがかかる。
本稿では,学習時間と推論時間の両方で高速で,軽量なニューラル表現を提案する。
我々のキーとなる観察は、従来のMLPで使用されるニューロンが単純な計算(ドット積とReLUの活性化)を行うため、複雑な非線形関数をパラメータ化するために、広帯域かつ深いMLPまたは高解像度かつ高次元の特徴格子を使用する必要があることである。
本稿では,従来のニューロンを放射基底関数(RBF)カーネルに置き換えることで,2D(RGB画像),3D(幾何学)および5D(放射場)信号の高精度な表現を実現することができることを示す。
この表現は高度に並列化可能で、低解像度の特徴グリッドで動作し、コンパクトでメモリ効率が高い。
提案手法は,15秒未満で3次元図形表現を,15分未満で新しい図形合成を訓練できることを示す。
実行時に、品質を犠牲にすることなく60fps以上の新しいビューを合成できる。
関連論文リスト
- N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
3Dコンピュータグラフィックスでは、シーンのメモリ使用量の大部分がポリゴンとテクスチャによるものである。
N-BVHは3次元の任意の光線クエリに応答するように設計されたニューラル圧縮アーキテクチャである。
本手法は, 視認性, 深度, 外観特性を忠実に近似する。
論文 参考訳(メタデータ) (2024-05-25T13:54:34Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
本研究では,3次元ガウス点数を削減するための学習可能なマスク戦略を提案する。
また、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2023-11-22T20:31:16Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
本研究では,NeRFを高効率メッシュベースニューラル表現に蒸留・焼成する手法を提案する。
提案手法の有効性と優位性を,各種標準データセットの広範な実験を通じて実証する。
論文 参考訳(メタデータ) (2023-04-20T17:59:52Z) - Masked Wavelet Representation for Compact Neural Radiance Fields [5.279919461008267]
3Dシーンやオブジェクトを表現するために多層パーセプトロンを使用するには、膨大な計算資源と時間が必要である。
本稿では,データ構造を付加することの利点を損なうことなく,サイズを小さくする方法を提案する。
提案したマスクと圧縮パイプラインにより,2MBのメモリ予算で最先端の性能を実現した。
論文 参考訳(メタデータ) (2022-12-18T11:43:32Z) - Neural Residual Flow Fields for Efficient Video Representations [5.904082461511478]
入射神経表現(INR)は、画像、ビデオ、3D形状などの信号を表現するための強力なパラダイムとして登場した。
本稿では,データ冗長性を明示的に取り除き,ビデオの表現と圧縮を行う新しいINR手法を提案する。
本稿では,提案手法がベースライン法よりも有意差で優れていることを示す。
論文 参考訳(メタデータ) (2022-01-12T06:22:09Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
2次元観察から3Dシーンの表現を推定することは、コンピュータグラフィックス、コンピュータビジョン、人工知能の基本的な問題である。
そこで我々は,360度4次元光場における基礎となる3次元シーンの形状と外観の両面を表現した新しいニューラルシーン表現,光場ネットワーク(LFN)を提案する。
LFNからレイをレンダリングするには*single*ネットワークの評価しか必要としない。
論文 参考訳(メタデータ) (2021-06-04T17:54:49Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。