論文の概要: ActiveInitSplat: How Active Image Selection Helps Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2503.06859v1
- Date: Mon, 10 Mar 2025 02:35:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:48:24.246639
- Title: ActiveInitSplat: How Active Image Selection Helps Gaussian Splatting
- Title(参考訳): ActiveInitSplat: 画像選択がガウスの切り抜きに役立つ方法
- Authors: Konstantinos D. Polyzos, Athanasios Bacharis, Saketh Madhuvarasu, Nikos Papanikolopoulos, Tara Javidi,
- Abstract要約: Gaussian splatting (GS) はその拡張と変種と共に、リアルタイムのシーンレンダリングにおいて優れたパフォーマンスを提供する。
以前の作品は受動的で一般的に密度の高い2D画像に依存していた。
本稿では,トレーニング画像のアクティブな選択のための新しいフレームワークであるActiveInitSplatを提案する。
- 参考スコア(独自算出の注目度): 8.732291001424812
- License:
- Abstract: Gaussian splatting (GS) along with its extensions and variants provides outstanding performance in real-time scene rendering while meeting reduced storage demands and computational efficiency. While the selection of 2D images capturing the scene of interest is crucial for the proper initialization and training of GS, hence markedly affecting the rendering performance, prior works rely on passively and typically densely selected 2D images. In contrast, this paper proposes `ActiveInitSplat', a novel framework for active selection of training images for proper initialization and training of GS. ActiveInitSplat relies on density and occupancy criteria of the resultant 3D scene representation from the selected 2D images, to ensure that the latter are captured from diverse viewpoints leading to better scene coverage and that the initialized Gaussian functions are well aligned with the actual 3D structure. Numerical tests on well-known simulated and real environments demonstrate the merits of ActiveInitSplat resulting in significant GS rendering performance improvement over passive GS baselines, in the widely adopted LPIPS, SSIM, and PSNR metrics.
- Abstract(参考訳): Gaussian splatting (GS) はその拡張と変種と共に、ストレージ要求の削減と計算効率を満足しながら、リアルタイムのシーンレンダリングにおいて優れたパフォーマンスを提供する。
興味のあるシーンを撮影する2D画像の選択は、GSの適切な初期化と訓練には不可欠であるが、したがってレンダリング性能に大きな影響を及ぼすが、以前の作業は受動的かつ一般的に選択された2D画像に依存していた。
一方,本研究では,GSの適切な初期化とトレーニングのためのトレーニングイメージをアクティブに選択するためのフレームワークである「ActiveInitSplat」を提案する。
ActiveInitSplatは、選択した2D画像から得られた3Dシーン表現の密度と占有基準に依存し、後者がより良いシーンカバレッジをもたらす多様な視点からキャプチャされ、初期化されたガウス関数が実際の3D構造に適切に整合していることを保証する。
良く知られたシミュレーションおよび実環境での数値実験は、広く採用されているLPIPS、SSIM、PSNRメトリクスにおいて、アクティブInitSplatの利点を示し、受動GSベースラインよりも大きなGSレンダリング性能の向上をもたらした。
関連論文リスト
- EasySplat: View-Adaptive Learning makes 3D Gaussian Splatting Easy [34.27245715540978]
高品質な3DGSモデリングを実現するための新しいフレームワークEasySplatを提案する。
本稿では、ビュー類似性に基づく効率的なグループ化戦略を提案し、高品質な点雲を得るためにロバストな点マップを前もって利用する。
信頼性の高いシーン構造を得た後、近隣のガウス楕円体の平均形状に基づいてガウス原始体を適応的に分割する新しいデンシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2025-01-02T01:56:58Z) - GSemSplat: Generalizable Semantic 3D Gaussian Splatting from Uncalibrated Image Pairs [33.74118487769923]
GSemSplatは,3次元ガウスに関連付けられた意味表現を,シーンごとの最適化や高密度画像収集,キャリブレーションなしに学習するフレームワークである。
本研究では,2次元空間における領域固有の意味的特徴と文脈認識的意味的特徴を両立させる二重機能アプローチを用いる。
論文 参考訳(メタデータ) (2024-12-22T09:06:58Z) - SplatLoc: 3D Gaussian Splatting-based Visual Localization for Augmented Reality [50.179377002092416]
より少ないパラメータで高品質なレンダリングが可能な効率的なビジュアルローカライズ手法を提案する。
提案手法は,最先端の暗黙的視覚的ローカライゼーションアプローチに対して,より優れた,あるいは同等なレンダリングとローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2024-09-21T08:46:16Z) - GS-Net: Generalizable Plug-and-Play 3D Gaussian Splatting Module [19.97023389064118]
粗いSfM点雲からガウス楕円体を密度化する3DGSモジュールであるGS-Netを提案する。
実験により、GS-Netを3DGSに適用すると、従来の視点では2.08dB、新しい視点では1.86dBのPSNR改善が得られることが示された。
論文 参考訳(メタデータ) (2024-09-17T16:03:19Z) - GS-CPR: Efficient Camera Pose Refinement via 3D Gaussian Splatting [25.780452115246245]
本稿では,新しいテストタイムカメラ・ポーズ・リファインメント(CPR)フレームワーク,GS-CPRを提案する。
このフレームワークは、最先端の絶対ポーズ回帰とシーン座標回帰法の局所化精度を高める。
3DGSモデルは高品質な合成画像と深度マップを描画し、2D-3D対応の確立を容易にする。
論文 参考訳(メタデータ) (2024-08-20T17:58:23Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - GS-CLIP: Gaussian Splatting for Contrastive Language-Image-3D
Pretraining from Real-World Data [73.06536202251915]
ポイントクラウドとして表される3D形状は、画像と言語記述を整列させるために、マルチモーダル事前トレーニングの進歩を実現している。
GS-CLIPは,3D表現を向上させるために,マルチモーダル事前学習に3DGSを導入するための最初の試みである。
論文 参考訳(メタデータ) (2024-02-09T05:46:47Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。