論文の概要: EasySplat: View-Adaptive Learning makes 3D Gaussian Splatting Easy
- arxiv url: http://arxiv.org/abs/2501.01003v2
- Date: Mon, 27 Jan 2025 04:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:50:52.330990
- Title: EasySplat: View-Adaptive Learning makes 3D Gaussian Splatting Easy
- Title(参考訳): EasySplat: ビュー適応学習により3Dガウスのスティングが簡単になる
- Authors: Ao Gao, Luosong Guo, Tao Chen, Zhao Wang, Ying Tai, Jian Yang, Zhenyu Zhang,
- Abstract要約: 高品質な3DGSモデリングを実現するための新しいフレームワークEasySplatを提案する。
本稿では、ビュー類似性に基づく効率的なグループ化戦略を提案し、高品質な点雲を得るためにロバストな点マップを前もって利用する。
信頼性の高いシーン構造を得た後、近隣のガウス楕円体の平均形状に基づいてガウス原始体を適応的に分割する新しいデンシフィケーション手法を提案する。
- 参考スコア(独自算出の注目度): 34.27245715540978
- License:
- Abstract: 3D Gaussian Splatting (3DGS) techniques have achieved satisfactory 3D scene representation. Despite their impressive performance, they confront challenges due to the limitation of structure-from-motion (SfM) methods on acquiring accurate scene initialization, or the inefficiency of densification strategy. In this paper, we introduce a novel framework EasySplat to achieve high-quality 3DGS modeling. Instead of using SfM for scene initialization, we employ a novel method to release the power of large-scale pointmap approaches. Specifically, we propose an efficient grouping strategy based on view similarity, and use robust pointmap priors to obtain high-quality point clouds and camera poses for 3D scene initialization. After obtaining a reliable scene structure, we propose a novel densification approach that adaptively splits Gaussian primitives based on the average shape of neighboring Gaussian ellipsoids, utilizing KNN scheme. In this way, the proposed method tackles the limitation on initialization and optimization, leading to an efficient and accurate 3DGS modeling. Extensive experiments demonstrate that EasySplat outperforms the current state-of-the-art (SOTA) in handling novel view synthesis.
- Abstract(参考訳): 3Dガウススティング(3DGS)技術は良好な3Dシーン表現を実現している。
印象的な性能にもかかわらず、正確なシーン初期化を得るための構造移動法(SfM)の限界や、デンシフィケーション戦略の非効率性といった問題に直面している。
本稿では,高品質な3DGSモデリングを実現するための新しいフレームワークEasySplatを提案する。
シーン初期化にSfMを使う代わりに、我々は大規模なポイントマップアプローチのパワーを解放する新しい手法を用いる。
具体的には、ビューの類似性に基づく効率的なグループ化戦略を提案し、3Dシーンの初期化のための高品質な点雲とカメラポーズを得るために、ロバストな点マップを用いた。
そこで我々は,KNNスキームを用いて,隣接するガウス楕円体の平均形状に基づいてガウス原始体を適応的に分割する新しい密度化手法を提案する。
このようにして,提案手法は初期化と最適化の限界に対処し,効率的かつ正確な3DGSモデリングを実現する。
大規模な実験により、EasySplatは、新しいビュー合成を扱う上で、現在のSOTA(State-of-the-art)よりも優れていることが示された。
関連論文リスト
- LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3Dガウススプラッティング(3DGS)はシーンを正確に表現するための効率的なアプローチとして登場した。
本稿では,ノイズの多い3DGS表現とスムーズな3Dメッシュ表現とのギャップを埋めるための新しい手法を提案する。
私たちは、オリジナルのトレーニングポーズに対応するステレオアライメントされたイメージのペアをレンダリングし、ペアをステレオモデルに入力して深度プロファイルを取得し、最後にすべてのプロファイルを融合して単一のメッシュを得る。
論文 参考訳(メタデータ) (2024-04-02T10:13:18Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3Dガウススプラッティングは、高速で高品質なレンダリング機能で知られる3D再構成と生成のための強力な技術として登場した。
本稿では,テキスト入力から3次元ガウス表現を効率的に生成する新しい拡散型フレームワークGVGENを提案する。
論文 参考訳(メタデータ) (2024-03-19T17:57:52Z) - Relaxing Accurate Initialization Constraint for 3D Gaussian Splatting [29.58220473268378]
我々は,3次元ガウス平滑化のための正確な初期化制約を導出する RAIN-GS という新しい最適化手法を提案する。
RAIN-GSは、準最適点雲(ランダム点雲など)から3Dガウスを訓練することに成功している。
ランダムポイントクラウドでトレーニングされたRAIN-GSは、正確なSfMポイントクラウドでトレーニングされた3DGSよりも高いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-14T14:04:21Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。