論文の概要: Improving cognitive diagnostics in pathology: a deep learning approach for augmenting perceptional understanding of histopathology images
- arxiv url: http://arxiv.org/abs/2503.06894v1
- Date: Mon, 10 Mar 2025 03:50:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:51:45.168741
- Title: Improving cognitive diagnostics in pathology: a deep learning approach for augmenting perceptional understanding of histopathology images
- Title(参考訳): 病理における認知診断の改善--組織像の知覚的理解を高めるための深層学習アプローチ
- Authors: Xiaoqian Hu,
- Abstract要約: 本論文は, 病理組織像解析の高度化に向けた新しいアプローチについて述べる。
視覚変換器(Vit)とGpt-2を併用した画像キャプチャ用マルチモーダルモデル
- 参考スコア(独自算出の注目度): 0.1813006808606333
- License:
- Abstract: In Recent Years, Digital Technologies Have Made Significant Strides In Augmenting-Human-Health, Cognition, And Perception, Particularly Within The Field Of Computational-Pathology. This Paper Presents A Novel Approach To Enhancing The Analysis Of Histopathology Images By Leveraging A Mult-modal-Model That Combines Vision Transformers (Vit) With Gpt-2 For Image Captioning. The Model Is Fine-Tuned On The Specialized Arch-Dataset, Which Includes Dense Image Captions Derived From Clinical And Academic Resources, To Capture The Complexities Of Pathology Images Such As Tissue Morphologies, Staining Variations, And Pathological Conditions. By Generating Accurate, Contextually Captions, The Model Augments The Cognitive Capabilities Of Healthcare Professionals, Enabling More Efficient Disease Classification, Segmentation, And Detection. The Model Enhances The Perception Of Subtle Pathological Features In Images That Might Otherwise Go Unnoticed, Thereby Improving Diagnostic Accuracy. Our Approach Demonstrates The Potential For Digital Technologies To Augment Human Cognitive Abilities In Medical Image Analysis, Providing Steps Toward More Personalized And Accurate Healthcare Outcomes.
- Abstract(参考訳): 近年、デジタル技術は、特にコンピュータ・パトロジーの分野において、人間の健康、認知、知覚を増大させる重要な進歩を遂げている。
本稿では、視覚変換器(Vit)とGpt-2を併用したマルチモーダルモデルを用いて、画像の組織像解析を支援する新しいアプローチを提案する。
The Specialized Arch-Datasetでは、臨床と学術のリソースから得られた複雑な画像キャプチャー、病理画像の複雑さをキャプチャーする。
The Model Augments The Cognitive Capabilities of Healthcare Professionals, Enabling more Efficient Disease Classification, Segmentation, and Detection。
このモデルでは、診断精度を改善して、それ以外は気づかない画像のサブトルの病理的特徴の知覚を高めます。
我々のアプローチは、デジタル技術が医療画像分析における人間の認知能力を高める可能性を示し、よりパーソナライズされ正確な医療成果に向けたステップを提供する。
関連論文リスト
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - PathoWAve: A Deep Learning-based Weight Averaging Method for Improving Domain Generalization in Histopathology Images [13.362177469092963]
病理画像解析における領域シフト現象に対処するために,病理量平均化(PathoWAve)を導入する。
The results on Camelyon17 WILDS dataset shows PathoWAve's superiority than previous proposed method。
論文 参考訳(メタデータ) (2024-06-21T23:25:44Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
病理組織学(CONCH)におけるコントラスト学習について紹介する。
CONCHは、様々な組織像、生医学的テキスト、タスクに依存しない事前トレーニングのソースを用いて開発された視覚言語基盤モデルである。
13種類の多様なベンチマークで評価され, 画像分類, セグメンテーション, キャプション, テキスト・ツー・イメージ検索, 画像・テキスト検索における最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-07-24T16:13:43Z) - Deepfake histological images for enhancing digital pathology [0.40631409309544836]
我々は,クラスラベルに制約された病理像を合成する生成逆ネットワークモデルを開発した。
前立腺および大腸組織像の合成におけるこの枠組みの有用性について検討した。
大腸生検によるより複雑な画像へのアプローチを拡張し,そのような組織における複雑な微小環境も再現可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T17:11:08Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。