Exposure Bias Reduction for Enhancing Diffusion Transformer Feature Caching
- URL: http://arxiv.org/abs/2503.07120v1
- Date: Mon, 10 Mar 2025 09:49:18 GMT
- Title: Exposure Bias Reduction for Enhancing Diffusion Transformer Feature Caching
- Authors: Zhen Zou, Hu Yu, Jie Xiao, Feng Zhao,
- Abstract summary: Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity.<n>We analyze the impact of caching on the SNR of the diffusion process.<n>We introduce EB-Cache, a joint cache strategy that aligns the Non-exposure bias.
- Score: 7.393824353099595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this problem, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing the impact of caching on the generation of intermediate processes. So the lack of exploration provides us with room for analysis and improvement. In this paper, we analyze the impact of caching on the SNR of the diffusion process and discern that feature caching intensifies the denoising procedure, and we further identify this as a more severe exposure bias issue. Drawing on this insight, we introduce EB-Cache, a joint cache strategy that aligns the Non-exposure bias (which gives us a higher performance ceiling) diffusion process. Our approach incorporates a comprehensive understanding of caching mechanisms and offers a novel perspective on leveraging caches to expedite diffusion processes. Empirical results indicate that EB-Cache optimizes model performance while concurrently facilitating acceleration. Specifically, in the 50-step generation process, EB-Cache achieves 1.49$\times$ acceleration with 0.63 FID reduction from 3.69, surpassing prior acceleration methods. Code will be available at \href{https://github.com/aSleepyTree/EB-Cache}{https://github.com/aSleepyTree/EB-Cache}.
Related papers
- AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse [19.13826316844611]
Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference.
We provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method.
We propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results.
arXiv Detail & Related papers (2025-04-13T08:29:58Z) - Model Reveals What to Cache: Profiling-Based Feature Reuse for Video Diffusion Models [41.11005178050448]
ProfilingDiT is a novel adaptive caching strategy that explicitly disentangles foreground and background-focused blocks.
Our framework achieves significant acceleration while maintaining visual fidelity across comprehensive quality metrics.
arXiv Detail & Related papers (2025-04-04T03:30:15Z) - QuantCache: Adaptive Importance-Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation [84.91431271257437]
Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation.<n>DiTs come with significant drawbacks, including increased computational and memory costs.<n>We propose QuantCache, a novel training-free inference acceleration framework.
arXiv Detail & Related papers (2025-03-09T10:31:51Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.
To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.
Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCache is a training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation.
We show that FasterCache can significantly accelerate video generation while keeping video quality comparable to the baseline.
arXiv Detail & Related papers (2024-10-25T07:24:38Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlow is designed to enhance inference efficiency by accommodating flexible routing and enabling efficient expert scheduling between CPU and GPU.
Our experiments demonstrate that ExpertFlow achieves up to 93.72% GPU memory savings and enhances inference speed by 2 to 10 times compared to baseline methods.
arXiv Detail & Related papers (2024-10-23T15:24:54Z) - Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching [56.286064975443026]
We make an interesting and somehow surprising observation: the computation of a large proportion of layers in the diffusion transformer, through a caching mechanism, can be readily removed even without updating the model parameters.
We introduce a novel scheme, named Learningto-Cache (L2C), that learns to conduct caching in a dynamic manner for diffusion transformers.
Experimental results show that L2C largely outperforms samplers such as DDIM and DPM-r, alongside prior cache-based methods at the same inference speed.
arXiv Detail & Related papers (2024-06-03T18:49:57Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.