論文の概要: The CodeInverter Suite: Control-Flow and Data-Mapping Augmented Binary Decompilation with LLMs
- arxiv url: http://arxiv.org/abs/2503.07215v2
- Date: Mon, 26 May 2025 15:58:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 19:27:26.731832
- Title: The CodeInverter Suite: Control-Flow and Data-Mapping Augmented Binary Decompilation with LLMs
- Title(参考訳): Code Inverter Suite: LLMによる制御フローとデータマッピング強化バイナリ逆コンパイル
- Authors: Peipei Liu, Jian Sun, Rongkang Sun, Li Chen, Zhaoteng Yan, Peizheng Zhang, Dapeng Sun, Dawei Wang, Xiaoling Zhang, Dan Li,
- Abstract要約: バイナリ逆コンパイルを改善するためのCodeInverter Suiteを開発した。
我々は、逆コンパイルを改善するために制御フローグラフと明示的なデータマッピングを使用します。
我々のCIM-6.7Bは最先端の逆コンパイル性能を達成できる。
- 参考スコア(独自算出の注目度): 43.591384969171614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary decompilation plays a vital role in various cybersecurity and software engineering tasks. Recently, end-to-end decompilation methods powered by large language models (LLMs) have garnered significant attention due to their ability to generate highly readable source code with minimal human intervention. However, existing LLM-based approaches face several critical challenges, including limited capability in reconstructing code structure and logic, low accuracy in data recovery, concerns over data security and privacy, and high computational resource requirements. To address these issues, we develop the CodeInverter Suite, making three contributions: (1) the CodeInverter Workflow (CIW) is a novel prompt engineering workflow that incorporates control flow graphs (CFG) and explicit data mappings to improve LLM-based decompilation. (2) Using CIW on well-known source code datasets, we curate the CodeInverter Dataset (CID), a domain-specific dataset containing 8.69 million samples that contains CFGs and data mapping tables. (3) We train the CoderInverter Models (CIMs) on CID, generating two lightweight LLMs (with 1.3B and 6.7B parameters) intended for efficient inference in privacy-sensitive or resource-constrained environments. Extensive experiments on two benchmarks demonstrate that the CIW substantially enhances the performance of various LLMs across multiple metrics. Our CIM-6.7B can achieve state-of-the-art decompilation performance, outperforming existing LLMs even with over 100x more parameters in decompilation tasks, an average improvement of 11.03% in re-executability, 6.27% in edit similarity.
- Abstract(参考訳): バイナリ・デコンパイルは、様々なサイバーセキュリティおよびソフトウェアエンジニアリングタスクにおいて重要な役割を果たす。
近年,大規模言語モデル(LLM)を利用したエンドツーエンドのデコンパイル手法が注目されている。
しかし、既存のLCMベースのアプローチでは、コード構造とロジックを再構築する能力の制限、データリカバリの精度の低さ、データセキュリティとプライバシに関する懸念、高い計算リソース要求など、いくつかの重要な課題に直面している。
1) CodeInverter Workflow(CIW)は、制御フローグラフ(CFG)と明示的なデータマッピングを組み込んだ新しいプロンプトエンジニアリングワークフローで、LLMベースの逆コンパイルを改善する。
2) 有名なソースコードデータセットのCIWを用いて、CFGとデータマッピングテーブルを含む8.69万のサンプルを含むドメイン固有のデータセットであるCodeInverter Dataset(CID)をキュレートする。
(3) CID 上で Coder Inverter Models (CIM) をトレーニングし,プライバシに敏感な環境やリソース制約のある環境での効率的な推論を目的とした2つの軽量 LLM (1.3B と 6.7B のパラメータ) を生成する。
2つのベンチマークでの大規模な実験により、CIWは複数のメトリクスにわたる様々なLLMの性能を大幅に向上させることが示された。
我々のCIM-6.7Bは最先端の逆コンパイル性能を達成でき、従来のLCMよりも100倍以上のパラメータが逆コンパイルタスクで、平均11.03%が再実行可能で、6.27%が類似している。
関連論文リスト
- Post-Incorporating Code Structural Knowledge into LLMs via In-Context Learning for Code Translation [10.77747590700758]
大規模言語モデル(LLM)はソフトウェアマイニングにおいて大きな進歩を遂げた。
ソースコードの構文構造を扱うことは 依然として課題です
本稿では、コード構造知識を事前学習したLLMに組み込むために、インコンテキスト学習(ICL)を用いる。
論文 参考訳(メタデータ) (2025-03-28T10:59:42Z) - SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors [0.0]
大規模言語モデル(LLM)は、コードに関連するタスクにおいて顕著な機能を示した。
LLMが多様なプログラムを理解し処理する能力を考えると、汎用的なサロゲートモデルを構築する上で有望な方向性を示す。
SURGEは、1160ドル(約1万1000円)の価格問題で、8ドル(約8万3000円)の鍵となる側面をカバーしたベンチマークです。
オープンソースおよびプロプライエタリ LLM の実証分析を通じて,スケーリング法則,データ効率,予測精度を検討した。
論文 参考訳(メタデータ) (2025-02-16T15:38:19Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Deriving Coding-Specific Sub-Models from LLMs using Resource-Efficient Pruning [4.762390044282733]
大規模言語モデル(LLM)は、様々な複雑なコード生成タスクにおいて、その例外的な性能を実証している。
このような要求を緩和するために、モデルプルーニング技術は、パラメータが著しく少ないよりコンパクトなモデルを作成するために使用される。
本研究では,非構造化プルーニングによる符号化特化サブモデルの効率的な導出について検討する。
論文 参考訳(メタデータ) (2025-01-09T14:00:01Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Mixture-of-Instructions: Aligning Large Language Models via Mixture Prompting [7.103987978402038]
我々はMixture-of-Instructions (MoI)と呼ばれる新しいテクニックを紹介する。
MoIは命令パッキングと多様なシステムプロンプトを組み合わせて言語モデルのアライメント効率を高める戦略を採用している。
提案手法はオープンソースQwen-7B-chatモデルに適用され,Qwen-SFT-MoIの開発が完了した。
論文 参考訳(メタデータ) (2024-04-29T03:58:12Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
復号法は、次世代の予測器から実用的なタスク解決器に言語モデルを変換する上で、必須の役割を果たす。
本稿では,大規模言語モデルの文脈における様々な復号法を包括的かつ多面的に分析する。
その結果,復号法の性能は特にタスク依存的であり,アライメント,モデルサイズ,量子化などの要因に影響されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-10T11:14:53Z) - Exploring Representation-Level Augmentation for Code Search [50.94201167562845]
我々は、データ処理やトレーニングを必要としない表現レベルでデータ(コードとクエリの両方)を増強する拡張手法について検討する。
大規模公開データセット上で,最先端のコード検索モデルを用いた表現レベル向上手法を実験的に評価した。
論文 参考訳(メタデータ) (2022-10-21T22:47:37Z) - Leveraging Key Information Modeling to Improve Less-Data Constrained
News Headline Generation via Duality Fine-Tuning [12.443476695459553]
本稿では,鍵情報予測と見出し生成タスクの確率的双対性制約を定式化することにより,新しい双対性微調整法を提案する。
提案手法は、限られたデータからより多くの情報をキャプチャし、別々のタスク間の接続を構築することができ、データ制約の少ない生成タスクに適している。
提案手法は,2つの公開データセット上で,言語モデリングの指標と情報量補正の指標を用いて,性能向上に有効かつ効果的であることを示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-10T07:59:36Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
本稿では,アプリケーションの静的情報(抽象構文木やASTなど)を用いてコード構造の変化に基づいて性能変化を予測することの実現可能性を評価することを目的とする。
組込み学習手法の評価により,木系長短メモリ(LSTM)モデルでは,ソースコードの階層構造を利用して遅延表現を発見し,最大84%(個人的問題)と73%(複数の問題を含む組み合わせデータセット)の精度で性能変化を予測できることが示された。
論文 参考訳(メタデータ) (2021-02-12T16:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。