論文の概要: A Systematic Review of ECG Arrhythmia Classification: Adherence to Standards, Fair Evaluation, and Embedded Feasibility
- arxiv url: http://arxiv.org/abs/2503.07276v1
- Date: Mon, 10 Mar 2025 12:57:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 20:09:44.908975
- Title: A Systematic Review of ECG Arrhythmia Classification: Adherence to Standards, Fair Evaluation, and Embedded Feasibility
- Title(参考訳): 心電図不整脈分類の体系的検討 : 標準化, 公正評価, 組込み可能性
- Authors: Guilherme Silva, Pedro Silva, Gladston Moreira, Vander Freitas, Jadson Gertrudes, Eduardo Luz,
- Abstract要約: このレビューは、2017年から2024年にかけて発行されたECG分類研究を体系的に分析する。
我々は,E3C基準を満たす最先端の手法を特定し,精度,推定時間,エネルギー消費,メモリ使用量の比較分析を行った。
これらのギャップに対処することにより、より堅牢で臨床的に実行可能なECG分類システムに向けた今後の研究を導くことを目的としている。
- 参考スコア(独自算出の注目度): 0.1932975952237668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The classification of electrocardiogram (ECG) signals is crucial for early detection of arrhythmias and other cardiac conditions. However, despite advances in machine learning, many studies fail to follow standardization protocols, leading to inconsistencies in performance evaluation and real-world applicability. Additionally, hardware constraints essential for practical deployment, such as in pacemakers, Holter monitors, and wearable ECG patches, are often overlooked. Since real-world impact depends on feasibility in resource-constrained devices, ensuring efficient deployment is critical for continuous monitoring. This review systematically analyzes ECG classification studies published between 2017 and 2024, focusing on those adhering to the E3C (Embedded, Clinical, and Comparative Criteria), which include inter-patient paradigm implementation, compliance with Association for the Advancement of Medical Instrumentation (AAMI) recommendations, and model feasibility for embedded systems. While many studies report high accuracy, few properly consider patient-independent partitioning and hardware limitations. We identify state-of-the-art methods meeting E3C criteria and conduct a comparative analysis of accuracy, inference time, energy consumption, and memory usage. Finally, we propose standardized reporting practices to ensure fair comparisons and practical applicability of ECG classification models. By addressing these gaps, this study aims to guide future research toward more robust and clinically viable ECG classification systems.
- Abstract(参考訳): 心電図(ECG)信号の分類は不整脈などの心疾患の早期発見に不可欠である。
しかし、機械学習の進歩にもかかわらず、多くの研究は標準化プロトコルに従わず、性能評価と実世界の適用性に矛盾をもたらす。
さらに、ペースメーカー、ホルターモニター、ウェアラブルECGパッチなど、実用的なデプロイメントに必要なハードウェア制約はしばしば見過ごされる。
実世界の影響は、リソース制約のあるデバイスの実現可能性に依存するため、継続的監視には、効率的なデプロイメントの確保が不可欠である。
本研究は、2017年から2024年にかけて発行されたECG分類研究を体系的に分析し、患者間パラダイム実装、AAMI勧告の遵守、組込みシステムへのモデル適用性など、E3C(埋め込み、臨床、比較基準)に準拠する研究に焦点を当てた。
多くの研究は高い精度を報告しているが、患者に依存しないパーティショニングやハードウェアの制限を適切に考慮する研究は少ない。
我々は,E3C基準を満たす最先端の手法を特定し,精度,推定時間,エネルギー消費,メモリ使用量の比較分析を行った。
最後に,ECG分類モデルの公平な比較と実用性を確保するため,標準化されたレポート手法を提案する。
これらのギャップに対処することにより、より堅牢で臨床的に実行可能なECG分類システムに向けた今後の研究を導くことを目的としている。
関連論文リスト
- GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
GEMは,第1回MLLM統合ECG時系列,第12回リードECG画像,地上および臨床のECG解釈のためのテキストである。
GEMは、3つのコアイノベーションを通じて機能的解析、エビデンス駆動推論、および臨床医のような診断プロセスを可能にする。
基礎心電図理解におけるMLLMの能力を評価するために,臨床動機付けのベンチマークであるグラウンドドECGタスクを提案する。
論文 参考訳(メタデータ) (2025-03-08T05:48:53Z) - DiffuSETS: 12-lead ECG Generation Conditioned on Clinical Text Reports and Patient-Specific Information [13.680337221159506]
心臓病は人間の健康にとって重大な脅威である。
プライバシー上の懸念と限られた医療資源によって駆動される高品質なECGデータの空洞化は、効果的なECG信号生成の押し付けの必要性を生み出します。
セマンティックアライメントと忠実度の高いECG信号を生成可能な新しいフレームワークであるDiffuSETSを提案する。
論文 参考訳(メタデータ) (2025-01-10T12:55:34Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling [11.617950008187366]
光胸腺造影法(英: Photoplethysmography, PPG)は、光学的手法を用いて心臓生理学を計測する費用効率の高い非侵襲的手法である。
本稿では,PPG信号を対応するECG波形に変換するために,主観非依存の注目に基づく深部状態空間モデル(ADSSM)を提案する。
論文 参考訳(メタデータ) (2023-09-27T03:07:46Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。