論文の概要: ECNN: A Low-complex, Adjustable CNN for Industrial Pump Monitoring Using Vibration Data
- arxiv url: http://arxiv.org/abs/2503.07401v1
- Date: Mon, 10 Mar 2025 14:49:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:45:24.718234
- Title: ECNN: A Low-complex, Adjustable CNN for Industrial Pump Monitoring Using Vibration Data
- Title(参考訳): ECNN:振動データを用いた産業用ポンプ監視用低複雑可変CNN
- Authors: Jonas Ney, Norbert Wehn,
- Abstract要約: 本稿では,産業用ポンプの故障を予測するための新しい拡張畳み込みニューラルネットワーク(ECNN)を提案する。
提案アルゴリズムは, 正規データサンプルの小さなセットで決定できるポンプ固有パラメータを特徴とする。
- 参考スコア(独自算出の注目度): 3.2043865480895937
- License:
- Abstract: Industrial pumps are essential components in various sectors, such as manufacturing, energy production, and water treatment, where their failures can cause significant financial and safety risks. Anomaly detection can be used to reduce those risks and increase reliability. In this work, we propose a novel enhanced convolutional neural network (ECNN) to predict the failure of an industrial pump based on the vibration data captured by an acceleration sensor. The convolutional neural network (CNN) is designed with a focus on low complexity to enable its implementation on edge devices with limited computational resources. Therefore, a detailed design space exploration is performed to find a topology satisfying the trade-off between complexity and accuracy. Moreover, to allow for adaptation to unknown pumps, our algorithm features a pump-specific parameter that can be determined by a small set of normal data samples. Finally, we combine the ECNN with a threshold approach to further increase the performance and satisfy the application requirements. As a result, our combined approach significantly outperforms a traditional statistical approach and a classical CNN in terms of accuracy. To summarize, this work provides a novel, low-complex, CNN-based algorithm that is enhanced by classical methods to offer high accuracy for anomaly detection of industrial pumps.
- Abstract(参考訳): 工業用ポンプは、製造業、エネルギー生産、水処理など、様々な分野において重要な要素であり、その失敗が経済的・安全上の重大なリスクを引き起こす可能性がある。
異常検出は、それらのリスクを低減し、信頼性を高めるために使用することができる。
本研究では,加速度センサが捉えた振動データに基づいて,産業用ポンプの故障を予測するための新しい畳み込みニューラルネットワーク(ECNN)を提案する。
畳み込みニューラルネットワーク(CNN)は、計算資源が限られているエッジデバイスに実装できるように、低複雑性に重点を置いて設計されている。
したがって、複雑さと精度のトレードオフを満たす位相を求めるために、詳細な設計空間探索を行う。
さらに、未知のポンプへの適応を可能にするため、本アルゴリズムは、正規データサンプルの小さなセットで決定できるポンプ固有パラメータを特徴とする。
最後に、ECNNとしきい値アプローチを組み合わせて、パフォーマンスをさらに向上し、アプリケーション要件を満たす。
その結果,従来の統計手法と従来のCNNよりも精度が優れていた。
要約すると、この研究は、産業用ポンプの異常検出に高い精度を提供するために、古典的な手法によって強化された、新しい、低複雑さのCNNベースのアルゴリズムを提供する。
関連論文リスト
- Enhanced Quantile Regression with Spiking Neural Networks for Long-Term System Health Prognostics [0.0]
本稿では,拡張量子回帰ニューラルネットワーク(EQRNN)を中心に,新しい予測保守フレームワークを提案する。
先進的なニューラルネットワークを組み合わせたハイブリッドアプローチによる早期障害検出の課題に対処する。
計算効率を維持しながら複雑なマルチモーダルセンサーデータを処理する上でのこのフレームワークの有効性は、産業用4.0の製造環境への適用性を検証する。
論文 参考訳(メタデータ) (2025-01-09T09:11:40Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - FL-QDSNNs: Federated Learning with Quantum Dynamic Spiking Neural Networks [4.635820333232683]
本稿では,FL-QDSNN(Federated Learning-Quantum Dynamic Spiking Neural Networks)フレームワークを紹介する。
私たちのフレームワークの中心は、量子スパイキングニューラルネットワーク(QSNN)における量子ゲートを活性化するための新しい動的しきい値機構である。
我々のFL-QDSNNsフレームワークは、Irisデータセットで94%の精度を示し、既存のQuantum Federated Learning(QFL)アプローチを著しく上回っている。
論文 参考訳(メタデータ) (2024-12-03T09:08:33Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
ディープフェイク技術は プライバシー セキュリティ 情報整合性に 課題をもたらす
本稿では,ディープフェイク音声の検出を強化するために,量子学習型畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T20:52:10Z) - Evaluation of machine learning architectures on the quantification of
epistemic and aleatoric uncertainties in complex dynamical systems [0.0]
不確実量化(英: Uncertainty Quantification、UQ)は、モデル誤差の自己評価値である。
ガウス過程とファミリーUQ強化ニューラルネットワークの両方を含む機械学習技術について検討する。
検証データ上の正規化残差の分布と推定不確かさの分布の2つの指標を用いて,UQ精度(モデル精度とは異なる)を評価する。
論文 参考訳(メタデータ) (2023-06-27T02:35:25Z) - The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks [0.368986335765876]
パラメータの量子化とプルーニングは、モデルサイズを圧縮し、メモリフットプリントを削減し、低レイテンシ実行を容易にする。
本研究では,身近な身近なジェスチャー認識システムであるSNNに対して,孤立度,累積的に,そして同時にプルーニングと量子化の様々な組み合わせについて検討する。
本研究では,3次重みまで精度の低下に悩まされることなく,攻撃的パラメータ量子化に対処可能であることを示す。
論文 参考訳(メタデータ) (2023-02-08T16:25:20Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。