論文の概要: Efficient Distributed Learning over Decentralized Networks with Convoluted Support Vector Machine
- arxiv url: http://arxiv.org/abs/2503.07563v1
- Date: Mon, 10 Mar 2025 17:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 18:54:23.051194
- Title: Efficient Distributed Learning over Decentralized Networks with Convoluted Support Vector Machine
- Title(参考訳): 複雑支援ベクトルマシンを用いた分散ネットワーク上での効率的な分散学習
- Authors: Canyi Chen, Nan Qiao, Liping Zhu,
- Abstract要約: 本稿では,分散ネットワーク上での高次元データを効率的に分類する問題に対処する。
我々は、ペナル化SVMを解くために、乗算器の効率的な一般化交互方向法(ADMM)を開発した。
- 参考スコア(独自算出の注目度): 2.722434989508884
- License:
- Abstract: This paper addresses the problem of efficiently classifying high-dimensional data over decentralized networks. Penalized support vector machines (SVMs) are widely used for high-dimensional classification tasks. However, the double nonsmoothness of the objective function poses significant challenges in developing efficient decentralized learning methods. Many existing procedures suffer from slow, sublinear convergence rates. To overcome this limitation, we consider a convolution-based smoothing technique for the nonsmooth hinge loss function. The resulting loss function remains convex and smooth. We then develop an efficient generalized alternating direction method of multipliers (ADMM) algorithm for solving penalized SVM over decentralized networks. Our theoretical contributions are twofold. First, we establish that our generalized ADMM algorithm achieves provable linear convergence with a simple implementation. Second, after a sufficient number of ADMM iterations, the final sparse estimator attains near-optimal statistical convergence and accurately recovers the true support of the underlying parameters. Extensive numerical experiments on both simulated and real-world datasets validate our theoretical findings.
- Abstract(参考訳): 本稿では,分散ネットワーク上での高次元データを効率的に分類する問題に対処する。
ペナライズされたサポートベクターマシン(SVM)は高次元の分類タスクに広く利用されている。
しかし、目的関数の二重非平滑性は、効率的な分散学習手法を開発する上で大きな課題を生んでいる。
既存の手順の多くは、遅い、サブ線形収束率に悩まされている。
この制限を克服するために,非滑らかなヒンジ損失関数に対する畳み込みに基づく平滑化手法を検討する。
結果として生じる損失関数は凸と滑らかなままである。
そこで我々は,分散化ネットワーク上でのペナル化SVMを解くために,乗算器の効率的な一般化交互方向法 (ADMM) を開発した。
私たちの理論的貢献は2倍です。
まず、一般化ADMMアルゴリズムが簡単な実装で証明可能な線形収束を実現することを確かめる。
第二に、十分な数のADMM反復の後、最終スパース推定器は、ほぼ最適の統計収束を獲得し、基礎となるパラメータの真の支持を正確に回復する。
シミュレーションと実世界の両方のデータセットに関する大規模な数値実験により、我々の理論的な結果が検証された。
関連論文リスト
- Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion [14.542166904874147]
similarity Completion Matrixは多くの機械学習タスクの中核にある基本的なツールとして機能する。
この問題に対処するために、類似行列理論(SMC)法が提案されているが、それらは複雑である。
提案手法は,PSD特性を解析して推定プロセスを導出し,低ランク解を保証するために非低ランク正規化器を組み込む2つの新しい,スケーラブルで効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-29T04:27:23Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - A GPU-Accelerated Bi-linear ADMM Algorithm for Distributed Sparse Machine Learning [4.258375398293221]
Bi-cADMMは、計算ノードのネットワーク上で定義された大規模正規化されたスパース機械学習問題を解決することを目的としている。
Bi-cADMMはParallel Sparse Fitting Toolboxと呼ばれるオープンソースのPythonパッケージで実装されている。
論文 参考訳(メタデータ) (2024-05-25T15:11:34Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
クロスモーダルハッシュは、大規模なマルチメディア検索問題を解決する方法として成功している。
これらの問題に対処する新しい非対称スケーラブルクロスモーダルハッシュ(ASCMH)を提案する。
我々のASCMHは、最先端のクロスモーダルハッシュ法よりも精度と効率の点で優れています。
論文 参考訳(メタデータ) (2022-07-26T04:38:47Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - A Convergent ADMM Framework for Efficient Neural Network Training [17.764095204676973]
乗算器の交互方向法(ADMM)は多くの分類と回帰の応用において大きな成功を収めた。
本稿では,ADMM (dlADMM) を用いてニューラルネットワークの一般的なトレーニング問題を同時に解くための新しい枠組みを提案する。
提案したdlADMMアルゴリズムの収束, 効率, 有効性を示す7つのベンチマークデータセットの実験を行った。
論文 参考訳(メタデータ) (2021-12-22T01:55:24Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
最先端のディープニューラルネットワーク(DNN)には、計算とデータ管理の大幅な要件がある。
スパシフィケーション法とプルーニング法は,DNNの大量の接続を除去するのに有効であることが示されている。
その結果得られたスパースネットワークは、ディープラーニングにおけるトレーニングと推論の計算効率をさらに向上するためのユニークな課題を提示する。
論文 参考訳(メタデータ) (2021-04-23T20:05:52Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。