Quantum-based Variational Approach for Solving Graph Isomorphism Problems
- URL: http://arxiv.org/abs/2503.07749v1
- Date: Mon, 10 Mar 2025 18:03:22 GMT
- Title: Quantum-based Variational Approach for Solving Graph Isomorphism Problems
- Authors: Yukun Wang, Yingtong Shen, Zhichao Zhang, Linchun Wan,
- Abstract summary: The graph isomorphism problem remains a fundamental challenge in computer science.<n>In this study, we integrate the principles of quantum technology to address the graph isomorphism problem.
- Score: 6.552614487642559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The graph isomorphism problem remains a fundamental challenge in computer science, driving the search for efficient decision algorithms. Due to its ambiguous computational complexity, heuristic approaches such as simulated annealing are frequently used to explore the solution space selectively. These methods often achieve high probabilities of identifying solutions quickly, avoiding the exhaustive enumeration required by exact algorithms. However, traditional simulated annealing usually struggles with low sampling efficiency and reduced solution-finding probability in complex or large graph problems. In this study, we integrate the principles of quantum technology to address the graph isomorphism problem. By mapping the solution space to a quantum many-body system, we developed a parameterized model for variational simulated annealing. This approach emphasizes the regions of the solution space that are most likely to contain the optimal solution, thereby enhancing the search accuracy. Artificial neural networks were utilized to parameterize the quantum many-body system, leveraging their capacity for efficient function approximation to perform accurate sampling in the intricate energy landscapes of large graph problems.
Related papers
- Entanglement-assisted variational algorithm for discrete optimization problems [0.0]
discrete optimization problems often exact intractable, necessitating the use of approximate methods.<n>Heuristics inspired by classical physics have long played a central role in this domain.<n> quantum annealing has emerged as a promising alternative, with hardware implementations realized on both analog and digital quantum devices.
arXiv Detail & Related papers (2025-01-15T19:00:10Z) - A Quantum Genetic Algorithm Framework for the MaxCut Problem [49.59986385400411]
The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles.<n>On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefinite Programming (SDP) approach.<n>On ErdHos-R'enyi random graphs, the QGA demonstrates competitive performance, achieving median solutions within 92-96% of the SDP results.
arXiv Detail & Related papers (2025-01-02T05:06:16Z) - Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm [0.0]
This paper introduces in detail a non-variational quantum algorithm designed to solve a wide range of optimisation problems.
The algorithm returns optimal and near-optimal solutions from repeated preparation and measurement of an amplified state.
arXiv Detail & Related papers (2024-07-29T13:54:28Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Efficient Solution of Boolean Satisfiability Problems with Digital
MemComputing [0.0]
We show that a memory-assisted physical system can efficiently solve the SAT problem in continuous time.
The efficiency of the simulations is related to the collective dynamical properties of the original physical system.
We anticipate our results to broaden research directions in physics-inspired computing paradigms.
arXiv Detail & Related papers (2020-11-12T18:13:46Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.