Safe Explicable Policy Search
- URL: http://arxiv.org/abs/2503.07848v1
- Date: Mon, 10 Mar 2025 20:52:41 GMT
- Title: Safe Explicable Policy Search
- Authors: Akkamahadevi Hanni, Jonathan MontaƱo, Yu Zhang,
- Abstract summary: We present Safe Explicable Policy Search (SEPS), which aims to provide a learning approach to explicable behavior generation while minimizing the safety risk.<n>We formulate SEPS as a constrained optimization problem where the agent aims to maximize an explicability score subject to constraints on safety.<n>We evaluate SEPS in safety-gym environments and with a physical robot experiment to show that it can learn explicable behaviors that adhere to the agent's safety requirements and are efficient.
- Score: 3.3869539907606603
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When users work with AI agents, they form conscious or subconscious expectations of them. Meeting user expectations is crucial for such agents to engage in successful interactions and teaming. However, users may form expectations of an agent that differ from the agent's planned behaviors. These differences lead to the consideration of two separate decision models in the planning process to generate explicable behaviors. However, little has been done to incorporate safety considerations, especially in a learning setting. We present Safe Explicable Policy Search (SEPS), which aims to provide a learning approach to explicable behavior generation while minimizing the safety risk, both during and after learning. We formulate SEPS as a constrained optimization problem where the agent aims to maximize an explicability score subject to constraints on safety and a suboptimality criterion based on the agent's model. SEPS innovatively combines the capabilities of Constrained Policy Optimization and Explicable Policy Search. We evaluate SEPS in safety-gym environments and with a physical robot experiment to show that it can learn explicable behaviors that adhere to the agent's safety requirements and are efficient. Results show that SEPS can generate safe and explicable behaviors while ensuring a desired level of performance w.r.t. the agent's objective, and has real-world relevance in human-AI teaming.
Related papers
- Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Learning responsibility allocations for multi-agent interactions: A differentiable optimization approach with control barrier functions [12.074590482085831]
We seek to codify factors governing safe multi-agent interactions via the lens of responsibility.
We propose a data-driven modeling approach based on control barrier functions and differentiable optimization.
arXiv Detail & Related papers (2024-10-09T20:20:41Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
We seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users.
We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions.
We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality.
arXiv Detail & Related papers (2024-09-26T21:00:45Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
We show how to leverage proxy criticality metrics to generate safety margins.
We evaluate our approach on learned policies from APE-X and A3C within an Atari environment.
arXiv Detail & Related papers (2023-07-25T16:49:54Z) - Safe Explicable Planning [3.3869539907606603]
We propose Safe Explicable Planning (SEP) to support the specification of a safety bound.
Our approach generalizes the consideration of multiple objectives stemming from multiple models.
We provide formal proofs that validate the desired theoretical properties of these methods.
arXiv Detail & Related papers (2023-04-04T21:49:02Z) - On Assessing The Safety of Reinforcement Learning algorithms Using
Formal Methods [6.2822673562306655]
Safety mechanisms such as adversarial training, adversarial detection, and robust learning are not always adapted to all disturbances in which the agent is deployed.
It is therefore necessary to propose new solutions adapted to the learning challenges faced by the agent.
We use reward shaping and a modified Q-learning algorithm as defense mechanisms to improve the agent's policy when facing adversarial perturbations.
arXiv Detail & Related papers (2021-11-08T23:08:34Z) - "I Don't Think So": Disagreement-Based Policy Summaries for Comparing
Agents [2.6270468656705765]
We propose a novel method for generating contrastive summaries that highlight the differences between agent's policies.
Our results show that the novel disagreement-based summaries lead to improved user performance compared to summaries generated using HIGHLIGHTS.
arXiv Detail & Related papers (2021-02-05T09:09:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.