論文の概要: Dynamic PET Image Reconstruction via Non-negative INR Factorization
- arxiv url: http://arxiv.org/abs/2503.08025v1
- Date: Tue, 11 Mar 2025 04:13:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:43:46.661307
- Title: Dynamic PET Image Reconstruction via Non-negative INR Factorization
- Title(参考訳): 非負のINR因子化による動的PET画像再構成
- Authors: Chaozhi Zhang, Wenxiang Ding, Roy Y. He, Xiaoqun Zhang, Qiaoqiao Ding,
- Abstract要約: 未知画像の低階行列分解に基づく非教師なし学習手法である非負インプリシットニューラルネットワーク表現因子化(textttNINRF)を導入する。
ポアソンノイズを用いた動的PET再構成実験により,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 2.6408529601818422
- License:
- Abstract: The reconstruction of dynamic positron emission tomography (PET) images from noisy projection data is a significant but challenging problem. In this paper, we introduce an unsupervised learning approach, Non-negative Implicit Neural Representation Factorization (\texttt{NINRF}), based on low rank matrix factorization of unknown images and employing neural networks to represent both coefficients and bases. Mathematically, we demonstrate that if a sequence of dynamic PET images satisfies a generalized non-negative low-rank property, it can be decomposed into a set of non-negative continuous functions varying in the temporal-spatial domain. This bridges the well-established non-negative matrix factorization (NMF) with continuous functions and we propose using implicit neural representations (INRs) to connect matrix with continuous functions. The neural network parameters are obtained by minimizing the KL divergence, with additional sparsity regularization on coefficients and bases. Extensive experiments on dynamic PET reconstruction with Poisson noise demonstrate the effectiveness of the proposed method compared to other methods, while giving continuous representations for object's detailed geometric features and regional concentration variation.
- Abstract(参考訳): ノイズプロジェクションデータからの動的ポジトロン放射トモグラフィ(PET)画像の再構成は重要な問題であるが、難しい問題である。
本稿では,未知画像の低階行列分解に基づく非教師なし学習手法である非負インプリシットニューラルネットワーク表現因子化(\texttt{NINRF})を導入し,ニューラルネットワークを用いて係数と基底を表現した。
数学的には, 動的PET画像の列が一般化された非負の低ランク特性を満たす場合, 時間空間領域で異なる非負の連続関数の集合に分解できることを示した。
このことは、よく確立された非負行列分解(NMF)を連続関数でブリッジし、暗黙のニューラル表現(INR)を用いて連続関数と行列を接続することを提案する。
ニューラルネットワークパラメータは、KL分散を最小化し、係数と基底に余分な正規化を加えることで得られる。
ポアソンノイズを用いた動的PET再構成に関する広範囲な実験は、物体の詳細な幾何学的特徴と局所濃度変動を連続的に表現しながら、提案手法の有効性を示した。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
ニューラルネットワークを利用して、座標入力を対応する属性に変換するインプシット表現(INR)は、視覚関連領域において大きな進歩をもたらした。
SL$2$A-INR を単層学習可能なアクティベーション関数として提案し,従来の ReLU ベースの有効性を推し進める。
提案手法は,画像表現,3次元形状再構成,単一画像超解像,CT再構成,新しいビューなど,多様なタスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T02:02:15Z) - Haar Nuclear Norms with Applications to Remote Sensing Imagery Restoration [53.68392692185276]
本稿では,Har Nuclear norm (HNN) という,高効率かつ効率的なリモートセンシング画像復元のための新しい低ランク正規化用語を提案する。
2次元前方スライス-ワイド・ハール離散ウェーブレット変換から導出されるウェーブレット係数の低ランク特性を利用する。
ハイパースペクトル像の着色, マルチテンポラル画像雲の除去, ハイパースペクトル像の脱色実験により, HNNの可能性が明らかとなった。
論文 参考訳(メタデータ) (2024-07-11T13:46:47Z) - Inferring stochastic low-rank recurrent neural networks from neural data [5.179844449042386]
計算神経科学における中心的な目的は、大きなニューロンの活動と基礎となる力学系を関連付けることである。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことによって、そのような解釈可能性を示す。
そこで本研究では,低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T15:57:49Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow [0.0]
偏微分方程式に基づく動的逆問題に対する明示的運動正規化器の導入の利点を示す。
また、ニューラルネットワークをグリッドベースの解法と比較し、前者はPSNRで後者より優れていることを示す。
論文 参考訳(メタデータ) (2024-06-03T13:07:29Z) - Ray-driven Spectral CT Reconstruction Based on Neural Base-Material Fields [10.684377265644045]
スペクトルCT再構成において、基本材料分解は積分方程式の大規模非線形系を解くことを伴う。
本稿では、ニューラルネットワーク表現を用いて物体の減衰係数をパラメータ化するモデルを提案する。
線駆動神経場に基づく線積分の軽量な離散化法を導入する。
論文 参考訳(メタデータ) (2024-04-10T13:10:52Z) - A novel image space formalism of Fourier domain interpolation neural
networks for noise propagation analysis [0.0]
我々は、MRI再構成におけるフーリエ領域のための畳み込みニューラルネットワーク(CNN)の画像空間形式を開発する。
画像領域で実行される推論は、k空間における推論と準同一である。
ノイズレジリエンスは、古典的並列画像の場合のように、よく特徴付けられる。
論文 参考訳(メタデータ) (2024-02-27T11:01:58Z) - Non Commutative Convolutional Signal Models in Neural Networks:
Stability to Small Deformations [111.27636893711055]
非可換畳み込みフィルタのフィルタ特性と安定性について検討する。
この結果は,グループニューラルネットワーク,マルチグラフニューラルネットワーク,四元系ニューラルネットワークに直接影響する。
論文 参考訳(メタデータ) (2023-10-05T20:27:22Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
本研究では,非可換畳み込みニューラルネットワークの一般化について検討する。
非可換畳み込み構造は作用素空間上の変形に対して安定であることを示す。
論文 参考訳(メタデータ) (2021-08-23T04:22:58Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。