論文の概要: MultiConIR: Towards multi-condition Information Retrieval
- arxiv url: http://arxiv.org/abs/2503.08046v3
- Date: Thu, 04 Sep 2025 06:11:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 14:03:58.677186
- Title: MultiConIR: Towards multi-condition Information Retrieval
- Title(参考訳): MultiConIR:マルチ条件情報検索を目指して
- Authors: Xuan Lu, Sifan Liu, Bochao Yin, Yongqi Li, Xinghao Chen, Hui Su, Yaohui Jin, Wenjun Zeng, Xiaoyu Shen,
- Abstract要約: MultiConIRは、複雑なマルチ条件クエリシナリオ下での検索および再ランクモデルの評価のために設計されたベンチマークである。
ほとんどのレトリバーとリランカは、クエリの複雑さが増大するにつれて、パフォーマンスが大幅に低下する。
この研究は、リランカの性能劣化の原因を解明し、クエリ内の条件位置が類似性評価にどのように影響するかを検討する。
- 参考スコア(独自算出の注目度): 38.864056667809095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-condition information retrieval (IR) presents a significant, yet underexplored challenge for existing systems. This paper introduces MultiConIR, a benchmark specifically designed to evaluate retrieval and reranking models under nuanced multi-condition query scenarios across five diverse domains. We systematically assess model capabilities through three critical tasks: complexity robustness, relevance monotonicity, and query format sensitivity. Our extensive experiments on 15 models reveal a critical vulnerability: most retrievers and rerankers exhibit severe performance degradation as query complexity increases. Key deficiencies include widespread failure to maintain relevance monotonicity, and high sensitivity to query style and condition placement. The superior performance of GPT-4o reveals the performance gap between IR systems and advanced LLM for handling sophisticated natural language queries. Furthermore, this work delves into the factors contributing to reranker performance deterioration and examines how condition positioning within queries affects similarity assessment, providing crucial insights for advancing IR systems towards complex search scenarios. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR
- Abstract(参考訳): マルチコンディション情報検索(IR)は,既存システムにおいて重要な課題である。
本稿では,5つのドメインにまたがる多条件クエリシナリオ下でのモデル検索と再ランク付けを行うためのベンチマークであるMultiConIRを紹介する。
複雑性の堅牢性、関連性の単調性、クエリフォーマットの感度の3つの重要なタスクを通じて、モデル機能の評価を体系的に行う。
ほとんどのレトリバーとリランカは、クエリの複雑さが増大するにつれて、大幅なパフォーマンス低下を示します。
主な欠点は、関連性のモノトニック性を維持するのに広く失敗すること、クエリスタイルと条件の配置に対する高い感度である。
GPT-4oの優れた性能は、洗練された自然言語クエリを扱うためのIRシステムと高度なLLMのパフォーマンスギャップを明らかにする。
さらに,クエリ内の条件位置が類似性評価にどのように影響するかを考察し,複雑な検索シナリオに向けてIRシステムを前進させる上で重要な洞察を与える。
コードとデータセットはhttps://github.com/EIT-NLP/MultiConIRで公開されている。
関連論文リスト
- Multimodal Information Retrieval for Open World with Edit Distance Weak Supervision [0.0]
FemmIRは、例えば類似性ラベルなしでマルチモーダルクエリで表現された情報に関連のある結果を検索するフレームワークである。
また,MuconoLの欠失症例に対してFemmIRを経験的に評価した。
論文 参考訳(メタデータ) (2025-06-25T00:25:08Z) - Reinforcing Compositional Retrieval: Retrieving Step-by-Step for Composing Informative Contexts [67.67746334493302]
大規模言語モデル(LLM)は、多くのタスクにまたがる顕著な機能を示してきたが、複雑なタスクを扱うために外部のコンテキストに依存していることが多い。
我々は、このプロセスをマルコフ決定プロセス(MDP)としてモデル化するトリエンコーダシーケンシャルレトリバーを提案する。
提案手法は,サンプル間の依存関係を明示的にモデル化することの重要性を強調し,ベースラインを一貫して大幅に上回ることを示す。
論文 参考訳(メタデータ) (2025-04-15T17:35:56Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
我々はマルチエージェント・マルチモデル推論を生成にまで拡張し、特に改良による忠実度の向上を図っている。
我々は,各サブタスクに対して固有の評価を設計し,マルチエージェント(複数インスタンス)とマルチモデル(多変数LPMタイプ)の両方がエラー検出やクオリティクスに有効であることを示す。
我々はこれらの知見を、マルチエージェント・マルチモデル・リファインメント(MAMM-Refinement)と呼ばれる最終的な"レシピ"に統合し、マルチエージェント・マルチモデルコラボレーションがパフォーマンスを大幅に向上させる。
論文 参考訳(メタデータ) (2025-03-19T14:46:53Z) - Do Retrieval-Augmented Language Models Adapt to Varying User Needs? [28.729041459278587]
本稿では,3つのユーザニーズ条件下でALMを体系的に評価する新しい評価フレームワークを提案する。
ユーザインストラクションと検索された情報の性質の両方を変えることで、我々のアプローチは現実世界のアプリケーションの複雑さを捉えます。
本研究は,検索システム開発におけるユーザ中心評価の必要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2025-02-27T05:39:38Z) - REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
近年の研究では、検索-拡張生成フレームワークと知識グラフを組み合わせることで、大規模言語モデルの推論能力を強力に向上することが示されている。
我々は多目的帯域拡張RAGフレームワークを導入し、多様な機能を持つ複数の検索手法をサポートする。
本手法は,定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-10T15:56:03Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
本稿では,マルチモーダル大言語モデル(MLLM)を用いた情報検索手法を提案する。
まず,16個の検索タスクを持つ10個のデータセットに対して,MLLMをバイエンコーダレトリバーとして微調整する。
我々のモデルMM-Embedはマルチモーダル検索ベンチマークM-BEIR上で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-04T20:06:34Z) - CART: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
クロスモーダル検索は、異なるモーダルデータの相互作用を通じて、クエリと意味的に関連するインスタンスを検索することを目的としている。
従来のソリューションでは、クエリと候補の間のスコアを明示的に計算するために、シングルトウワーまたはデュアルトウワーのフレームワークを使用している。
粗大なセマンティックモデリングに基づく生成的クロスモーダル検索フレームワーク(CART)を提案する。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
マルチモーダルなマルチホップ質問応答は、異なるモーダルから複数の入力ソースを推論することで質問に答える。
既存の手法は、しばしば別々に証拠を検索し、その後言語モデルを使用して、得られた証拠に基づいて回答を生成する。
本稿では,これらの問題に対処するため,構造化知識と統一検索生成(RG)アプローチを提案する。
論文 参考訳(メタデータ) (2022-12-16T18:12:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。