ICPR 2024 Competition on Rider Intention Prediction
- URL: http://arxiv.org/abs/2503.08437v1
- Date: Tue, 11 Mar 2025 13:50:37 GMT
- Title: ICPR 2024 Competition on Rider Intention Prediction
- Authors: Shankar Gangisetty, Abdul Wasi, Shyam Nandan Rai, C. V. Jawahar, Sajay Raj, Manish Prajapati, Ayesha Choudhary, Aaryadev Chandra, Dev Chandan, Shireen Chand, Suvaditya Mukherjee,
- Abstract summary: Rider intention prediction (RIP) competition aims to address challenges in rider safety by proactively predicting maneuvers before they occur.<n>We collect a new dataset, namely, rider action anticipation dataset (RAAD) for the competition consisting of two tasks: single-view RIP and multi-view RIP.<n>For the competition, we received seventy-five registrations and five team submissions for inference of which we compared the methods of the top three performing teams on both the RIP tasks.
- Score: 19.858523089237675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent surge in the vehicle market has led to an alarming increase in road accidents. This underscores the critical importance of enhancing road safety measures, particularly for vulnerable road users like motorcyclists. Hence, we introduce the rider intention prediction (RIP) competition that aims to address challenges in rider safety by proactively predicting maneuvers before they occur, thereby strengthening rider safety. This capability enables the riders to react to the potential incorrect maneuvers flagged by advanced driver assistance systems (ADAS). We collect a new dataset, namely, rider action anticipation dataset (RAAD) for the competition consisting of two tasks: single-view RIP and multi-view RIP. The dataset incorporates a spectrum of traffic conditions and challenging navigational maneuvers on roads with varying lighting conditions. For the competition, we received seventy-five registrations and five team submissions for inference of which we compared the methods of the top three performing teams on both the RIP tasks: one state-space model (Mamba2) and two learning-based approaches (SVM and CNN-LSTM). The results indicate that the state-space model outperformed the other methods across the entire dataset, providing a balanced performance across maneuver classes. The SVM-based RIP method showed the second-best performance when using random sampling and SMOTE. However, the CNN-LSTM method underperformed, primarily due to class imbalance issues, particularly struggling with minority classes. This paper details the proposed RAAD dataset and provides a summary of the submissions for the RIP 2024 competition.
Related papers
- Predicting Driver's Perceived Risk: a Model Based on Semi-Supervised Learning Strategy [7.227510169013427]
Driver's subjective perceived risk (DSPR) model is proposed, regarding perceived risk as a dynamically triggered mechanism with anisotropy and attenuation.
20 participants are recruited for a driver-in-the-loop experiment to report their real-time subjective risk ratings (SRRs) when experiencing various automatic driving scenarios.
DSPR achieves the highest prediction accuracy of 87.91% in predicting SRRs, compared to three state-of-the-art risk models.
arXiv Detail & Related papers (2025-04-17T05:50:33Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.<n>Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
arXiv Detail & Related papers (2024-09-17T13:26:17Z) - ICPR 2024 Competition on Safe Segmentation of Drive Scenes in Unstructured Traffic and Adverse Weather Conditions [1.4874918394223613]
The ICPR 2024 Competition on Safe of Drive Scenes in Unstructured Traffic and Adverse Weather Conditions served as a rigorous platform to evaluate and benchmark state-of-the-art semantic segmentation models.
A key aspect of the competition was the use and improvement of the Safe mean Intersection over Union (Safe mIoU) metric.
The results of the competition set new benchmarks in the domain, highlighting the critical role of safety in deploying autonomous vehicles in real-world scenarios.
arXiv Detail & Related papers (2024-09-09T04:42:57Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
It is critical for Autonomous Vehicles to have the ability to predict pedestrians' short-term and immediate actions in real-time.
In this work, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction.
The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction.
arXiv Detail & Related papers (2023-05-22T14:03:38Z) - A Benchmark for Cycling Close Pass Near Miss Event Detection from Video
Streams [35.17510169229505]
We introduce a novel benchmark, called Cyc-CP, towards cycling close pass near miss event detection from video streams.
We propose two benchmark models based on deep learning techniques for these two problems.
Our models can achieve 88.13% and 84.60% accuracy on the real-world dataset.
arXiv Detail & Related papers (2023-04-24T07:30:01Z) - Dynamic loss balancing and sequential enhancement for road-safety
assessment and traffic scene classification [0.0]
Road-safety inspection is an indispensable instrument for reducing road-accident fatalities contributed to road infrastructure.
Recent work formalizes road-safety assessment in terms of carefully selected risk factors that are also known as road-safety attributes.
We propose to reduce dependency on tedious human labor by automating recognition with a two-stage neural architecture.
arXiv Detail & Related papers (2022-11-08T11:10:07Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Learn-to-Race Challenge 2022: Benchmarking Safe Learning and
Cross-domain Generalisation in Autonomous Racing [12.50944966521162]
We present the results of our autonomous racing virtual challenge, based on the newly-released Learn-to-Race (L2R) simulation framework.
In this paper, we describe the new L2R Task 2.0 benchmark, with refined metrics and baseline approaches.
We also provide an overview of deployment, evaluation, and rankings for the inaugural instance of the L2R Autonomous Racing Virtual Challenge.
arXiv Detail & Related papers (2022-05-05T22:31:19Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.