論文の概要: Multimodal Stock Price Prediction: A Case Study of the Russian Securities Market
- arxiv url: http://arxiv.org/abs/2503.08696v1
- Date: Wed, 05 Mar 2025 21:20:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 07:11:35.240654
- Title: Multimodal Stock Price Prediction: A Case Study of the Russian Securities Market
- Title(参考訳): マルチモーダル株価予測 : ロシア証券市場を事例として
- Authors: Kasymkhan Khubiev, Mikhail Semenov,
- Abstract要約: 本稿では,キャンドルスティック時系列とニュースフローデータを組み合わせたマルチモーダルアプローチを用いて,金融資産価格の予測問題に対処する。
モスクワ証券取引所で取引されたロシア株176株と、ロシアの金融ニュース記事79,555株の時系列を含む、ユニークなデータセットが収集された。
実験の結果, テキストのモダリティを組み込むことでMAPEの値が55%減少した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Classical asset price forecasting methods primarily rely on numerical data, such as price time series, trading volumes, limit order book data, and technical analysis indicators. However, the news flow plays a significant role in price formation, making the development of multimodal approaches that combine textual and numerical data for improved prediction accuracy highly relevant. This paper addresses the problem of forecasting financial asset prices using the multimodal approach that combines candlestick time series and textual news flow data. A unique dataset was collected for the study, which includes time series for 176 Russian stocks traded on the Moscow Exchange and 79,555 financial news articles in Russian. For processing textual data, pre-trained models RuBERT and Vikhr-Qwen2.5-0.5b-Instruct (a large language model) were used, while time series and vectorized text data were processed using an LSTM recurrent neural network. The experiments compared models based on a single modality (time series only) and two modalities, as well as various methods for aggregating text vector representations. Prediction quality was estimated using two key metrics: Accuracy (direction of price movement prediction: up or down) and Mean Absolute Percentage Error (MAPE), which measures the deviation of the predicted price from the true price. The experiments showed that incorporating textual modality reduced the MAPE value by 55%. The resulting multimodal dataset holds value for the further adaptation of language models in the financial sector. Future research directions include optimizing textual modality parameters, such as the time window, sentiment, and chronological order of news messages.
- Abstract(参考訳): 古典的な資産価格予測手法は、主に価格時系列、取引量、限定注文帳データ、技術分析指標などの数値データに依存している。
しかし、ニュースフローは価格形成において重要な役割を担い、テキストと数値データを組み合わせたマルチモーダル手法を開発し、予測精度を高く向上させる。
本稿では,キャンドルスティック時系列とテキストニュースフローデータを組み合わせたマルチモーダルアプローチを用いて,金融資産価格の予測問題に対処する。
この調査には、モスクワ証券取引所で取引されたロシア株176株と、ロシアの金融ニュース記事79,555件の時系列が含まれている。
テキストデータの処理には、RuBERTとVikhr-Qwen2.5-0.5b-Instruct(大規模言語モデル)が、時系列とベクトル化されたテキストデータはLSTMリカレントニューラルネットワークを用いて処理された。
実験では、単一のモダリティ(時系列のみ)と2つのモダリティに基づくモデルと、テキストベクトル表現を集約する様々な方法を比較した。
予測品質は2つの主要な指標を用いて推定された。精度(価格移動予測の方向:上昇または下降)と平均絶対パーセンテージ誤差(MAPE)である。
実験の結果, テキストのモダリティを組み込むことでMAPEの値が55%減少した。
結果として得られるマルチモーダルデータセットは、金融セクターにおける言語モデルのさらなる適応のための価値を持っている。
今後の研究の方向性には、タイムウィンドウ、感情、ニュースメッセージの時系列順序などのテキストモーダルパラメータの最適化が含まれる。
関連論文リスト
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Multimodal Stock Price Prediction [0.0]
さまざまなデータソースと機械学習を慎重に統合して、正確な株価予測を行うことがますます重要になっている。
本稿では,従来の財務指標,つぶやき,ニュース記事など,さまざまな情報源のデータを組み合わせて,株価予測のためのマルチモーダル機械学習手法を提案する。
論文 参考訳(メタデータ) (2025-01-23T16:38:46Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction [13.52020491768311]
株価時系列データに特化して設計された新しいLCMベースのアーキテクチャであるStockTimeを紹介する。
最近のFinLLMとは異なり、StockTimeは特に株価時系列データのために設計されている。
このマルチモーダルデータを融合させることで、StockTimeは任意の見返り期間の株価を効果的に予測する。
論文 参考訳(メタデータ) (2024-08-25T00:50:33Z) - Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models [9.991327369572819]
本稿では,関連事象に関するテキスト情報を組み込んだ協調モデリングフレームワークを提案する。
我々は、将来の変更に関する大規模言語モデルの直感を活用して、実数時系列の予測を更新する。
論文 参考訳(メタデータ) (2024-07-04T07:21:38Z) - Natural Language Processing and Multimodal Stock Price Prediction [0.8702432681310401]
本稿では,従来の生通貨価値の活用とは対照的に,株価変動をトレーニングデータとして活用する。
パーセンテージの変化の選択は、価格変動の重要性に関する文脈をモデルに提供することを目的としている。
この研究は、株価トレンドを予測するために、特別なBERT自然言語処理モデルを用いている。
論文 参考訳(メタデータ) (2024-01-03T01:21:30Z) - Contrastive Difference Predictive Coding [79.74052624853303]
本研究では、時系列データの断片を縫合して、将来の事象の予測を学習するために必要なデータの量を減少させるコントラッシブ予測符号化の時間差版を導入する。
目的条件付きRLの非政治アルゴリズムを導出するために,この表現学習手法を適用した。
論文 参考訳(メタデータ) (2023-10-31T03:16:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task
Financial Forecasting [17.691653056521904]
本稿では,マルチモーダル・アライン・ファイナンス・コールデータを用いて,株価リターンと金融リスクを予測する数値指向階層型トランスフォーマーモデルについて述べる。
実世界の公開データセットを用いて,いくつかの最先端ベースラインに対するNum HTMLの総合的な評価結果を示す。
論文 参考訳(メタデータ) (2022-01-05T10:17:02Z) - Few-shot learning through contextual data augmentation [74.20290390065475]
機械翻訳モデルは、時間とともに性能を維持するために新しいデータに適応する必要がある。
一つの例から5つの例への適応が可能であることを示す。
本モデルでは,平均313個の並列例でトレーニングした基準システムよりも精度がよいことを示す。
論文 参考訳(メタデータ) (2021-03-31T09:05:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。