論文の概要: Simulating Influence Dynamics with LLM Agents
- arxiv url: http://arxiv.org/abs/2503.08709v1
- Date: Mon, 10 Mar 2025 03:05:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:35:05.219212
- Title: Simulating Influence Dynamics with LLM Agents
- Title(参考訳): LLM剤による影響ダイナミクスのシミュレーション
- Authors: Mehwish Nasim, Syed Muslim Gilani, Amin Qasmi, Usman Naseem,
- Abstract要約: 本稿では、ソーシャルネットワーク内での競合する影響をモデル化するために、意見力学研究者向けに設計されたシミュレータを提案する。
このツールは、確立された意見力学の原理を最先端のLCMと統合することにより、影響伝播と反情報戦略の研究を可能にする。
- 参考スコア(独自算出の注目度): 4.055206971178399
- License:
- Abstract: This paper introduces a simulator designed for opinion dynamics researchers to model competing influences within social networks in the presence of LLM-based agents. By integrating established opinion dynamics principles with state-of-the-art LLMs, this tool enables the study of influence propagation and counter-misinformation strategies. The simulator is particularly valuable for researchers in social science, psychology, and operations research, allowing them to analyse societal phenomena without requiring extensive coding expertise. Additionally, the simulator will be openly available on GitHub, ensuring accessibility and adaptability for those who wish to extend its capabilities for their own research.
- Abstract(参考訳): 本稿では,LLMエージェントの存在下でのソーシャルネットワーク内の競合する影響をモデル化するために,意見力学研究者向けに設計されたシミュレータを提案する。
このツールは、確立された意見力学の原理を最先端のLLMと統合することにより、影響伝播と反情報戦略の研究を可能にする。
このシミュレータは社会科学、心理学、オペレーション研究の研究者にとって特に有用であり、広範なコーディングの専門知識を必要とせずに社会現象を分析することができる。
さらにシミュレータはGitHubで公開され、自身の研究のためにその能力を拡張したい人のために、アクセシビリティと適応性を保証する。
関連論文リスト
- Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
本稿では、行動誘導応答生成によるソーシャルメディアのエンゲージメントをシミュレートする大規模言語モデルの能力について分析する。
GPT-4o-mini,O1-mini,DeepSeek-R1をソーシャルメディアエンゲージメントシミュレーションで評価した。
論文 参考訳(メタデータ) (2025-02-17T17:43:08Z) - Build An Influential Bot In Social Media Simulations With Large Language Models [7.242974711907219]
本研究では,エージェントベースモデリング(ABM)とLarge Language Models(LLM)を組み合わせた新しいシミュレーション環境を提案する。
本稿では,Reinforcement Learning (RL) の革新的応用として,世論指導者形成の過程を再現する手法を提案する。
以上の結果から,行動空間の制限と自己観察の導入が,世論指導層形成の安定に寄与する重要な要因であることが示唆された。
論文 参考訳(メタデータ) (2024-11-29T11:37:12Z) - Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
大規模言語モデル(LLM)は1対1の相互作用において重要な説得能力を示す。
本研究では,相互接続型ユーザにおけるLCMの社会的影響と複雑な意見力学について検討する。
論文 参考訳(メタデータ) (2024-11-20T10:40:08Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
RAGシステムの有効性に寄与する内部メカニズムは未解明のままである。
実験の結果,複数のコアグループの専門家がRAG関連行動に主に関与していることが判明した。
本稿では,専門家の活性化を通じてRAGの効率性と有効性を高めるためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-10-20T16:08:54Z) - LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and Opportunities [0.0]
大きな言語モデルとエージェントベースのシミュレーションを統合することは、複雑な社会システムを理解するための変換可能性を提供する。
LLM強化社会シミュレーションを体系的に開発するためのアーキテクチャと手法について検討する。
LLMとエージェントベースのシミュレーションを統合することは、研究者や科学者に強力なツールセットを提供すると結論付けている。
論文 参考訳(メタデータ) (2024-05-08T08:57:54Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - BASES: Large-scale Web Search User Simulation with Large Language Model
based Agents [108.97507653131917]
BASESは、大きな言語モデル(LLM)を持つ新しいユーザーシミュレーションフレームワークである。
シミュレーションフレームワークは,大規模に独自のユーザプロファイルを生成することができ,その結果,多様な検索行動が生まれる。
WARRIORSは、中国語と英語の両方のバージョンを含む、Web検索ユーザ行動を含む、新しい大規模なデータセットである。
論文 参考訳(メタデータ) (2024-02-27T13:44:09Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
人間の相互作用をシミュレートする際の大規模言語モデルの限界について検討する。
以上の結果から, LLMエージェントがモデル固有の社会的バイアスに適合する傾向が示唆された。
これらの結果は、エージェントがこれらのバイアスを克服するのに役立つ方法を開発するためのさらなる研究の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-06T14:51:55Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
計算実験は複雑なシステムを研究するための貴重な方法として登場した。
エージェントベースモデリング(ABM)における実際の社会システムを正確に表現することは、人間の多様性と複雑な特性のために困難である。
大規模言語モデル(LLM)の統合が提案され、エージェントが人為的な能力を持つことができる。
論文 参考訳(メタデータ) (2024-02-01T01:17:46Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。