Quantum Information of a Four-Level Tripod-Type Atom in Motion Interacting with a Deformed Binomial Field in the Presence of a Non-Linear Medium
- URL: http://arxiv.org/abs/2503.09000v1
- Date: Wed, 12 Mar 2025 02:28:47 GMT
- Title: Quantum Information of a Four-Level Tripod-Type Atom in Motion Interacting with a Deformed Binomial Field in the Presence of a Non-Linear Medium
- Authors: Sameh T. Korashy,
- Abstract summary: This paper investigates the interaction dynamics of a four-level tripod-type atomic system coupled to a q-deformed binomial field state within a Kerr-medium.<n>Special focus is placed on examining how the q-deformation, time-dependent coupling parameter, detuning parameter and Kerr nonlinearity affect the system's fidelity properties and linear entropy dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the interaction dynamics of a four-level tripod-type atomic system coupled to a q-deformed binomial field state within a Kerr-medium. The interaction model incorporates time-dependent coupling parameter and detuning parameter, providing a more adaptable framework for describing atom-field interactions. Special focus is placed on examining how the q-deformation, time-dependent coupling parameter, detuning parameter and Kerr nonlinearity affect the system's fidelity properties and linear entropy dynamics. Our results demonstrate that the effects of the considered parameters have a significant impact on atom-field entanglement and fidelity. These findings offer valuable insights into controlled quantum systems, with potential applications in quantum information processing and nonlinear quantum optics.
Related papers
- Dynamics of atom-field interaction inside a nonlinear Kerr-like medium filled optical cavity [1.2974520793373163]
We investigate the dynamics of two two-level atoms interacting with a two-mode field inside an optical cavity.
We derive the exact analytical solution of the time-dependent Schr"odinger equation.
We quantify the atom-atom entanglement using linear entropy.
arXiv Detail & Related papers (2025-03-21T05:45:51Z) - Dynamics of a V-type atom inside a deformed cavity field and in the presence of an external Microwave field [0.0]
We explore the interaction between a V-type atom inside a single mode deformed cavity field in the presence of an external microwave field.
The Hamiltonian describing the system is derived from the standard Jaynes-Cummings model by deforming the field operators.
arXiv Detail & Related papers (2024-08-29T16:28:33Z) - Quantum entanglement dynamics of the three-qubit W_zeta quantum state coupled to spin chain with ternary interaction [0.0]
We investigate changes in negativity in terms of anisotropy parameters, gamma, the strength of the external magnetic field applied to the spin chain, eta, the triple interaction strength, alpha.<n>We examine how these parameters affect the entanglement properties of the system and discuss the implications for quantum information processing and quantum communication protocols.
arXiv Detail & Related papers (2024-05-26T02:06:59Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum Control of the Time-Dependent Interaction between a Three-Level
$\Xi$-Type Atom and a Two-Mode Field with Damping Term [0.0]
We investigate some properties through a three-level $Xi$-type atom interacting with a two-mode field.
The time-dependent coupling parameter and the detuning parameter can be considered as quantum control parameters of the atomic population inversion and quantum entanglement.
arXiv Detail & Related papers (2021-11-09T23:19:53Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.