Constraint-Guided Learning of Data-driven Health Indicator Models: An Application on the Pronostia Bearing Dataset
- URL: http://arxiv.org/abs/2503.09113v1
- Date: Wed, 12 Mar 2025 07:01:27 GMT
- Title: Constraint-Guided Learning of Data-driven Health Indicator Models: An Application on the Pronostia Bearing Dataset
- Authors: Yonas Tefera, Quinten Van Baelen, Maarten Meire, Stijn Luca, Peter Karsmakers,
- Abstract summary: This paper presents a constraint-guided deep learning framework for developing physically consistent health indicators.<n>We implement constraint-guided gradient descent within an autoencoder architecture, creating a constrained autoencoder.<n>Performance is assessed using three metrics: trendability, robustness, and consistency.
- Score: 0.7340017786387768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a constraint-guided deep learning framework for developing physically consistent health indicators in bearing prognostics and health management. Conventional data-driven methods often lack physical plausibility, while physics-based models are limited by incomplete system knowledge. To address this, we integrate domain knowledge into deep learning using constraints to enforce monotonicity, bound output values between 1 and 0 (representing healthy to failed states), and ensure consistency between signal energy trends and health indicator estimates. This eliminates the need for complex loss term balancing. We implement constraint-guided gradient descent within an autoencoder architecture, creating a constrained autoencoder. However, the framework is adaptable to other architectures. Using time-frequency representations of accelerometer signals from the Pronostia dataset, our constrained model generates smoother, more reliable degradation profiles compared to conventional methods, aligning with expected physical behavior. Performance is assessed using three metrics: trendability, robustness, and consistency. Compared to a conventional baseline, the constrained model improves all three. Another baseline, incorporating monotonicity via a soft-ranking loss function, outperforms in trendability but falls short in robustness and consistency. An ablation study confirms that the monotonicity constraint enhances trendability, the boundary constraint ensures consistency, and the energy-health consistency constraint improves robustness. These findings highlight the effectiveness of constraint-guided deep learning in producing reliable, physically meaningful health indicators, offering a promising direction for future prognostic applications.
Related papers
- Gradient-Free Generation for Hard-Constrained Systems [41.558608119074755]
Existing constrained generative models rely heavily on gradient information, which is often sparse or computationally expensive in some fields.
We introduce a novel framework for adapting pre-trained, unconstrained flow-matching models to satisfy constraints exactly in a zero-shot manner.
arXiv Detail & Related papers (2024-12-02T18:36:26Z) - Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density [93.32594873253534]
Trustworthy machine learning requires meticulous regulation of model reliance on non-robust features.
We propose a framework to delineate and regulate such features by attributing model predictions to the input.
arXiv Detail & Related papers (2024-07-05T09:16:56Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - ConSequence: Synthesizing Logically Constrained Sequences for Electronic
Health Record Generation [37.72570170375048]
We present ConSequence, an effective approach to integrating domain knowledge into sequential generative neural network outputs.
We demonstrate ConSequence's effectiveness in generating electronic health records, outperforming competitors in achieving complete temporal and spatial constraint satisfaction.
arXiv Detail & Related papers (2023-12-10T18:43:37Z) - Controlled physics-informed data generation for deep learning-based
remaining useful life prediction under unseen operation conditions [3.6750425865066925]
This study combines the controlled physics-informed data generation approach with a deep learning-based prediction model for prognostics.
A new controlled physics-informed generative adversarial network (CPI-GAN) is developed to generate synthetic degradation trajectories.
The generated trajectories enable to significantly improve the accuracy of RUL predictions.
arXiv Detail & Related papers (2023-04-23T17:34:26Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation [5.147919654191323]
This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation.
The proposed framework is validated on a planar quadrotor example.
arXiv Detail & Related papers (2021-12-15T15:57:33Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Learning perturbation sets for robust machine learning [97.6757418136662]
We use a conditional generator that defines the perturbation set over a constrained region of the latent space.
We measure the quality of our learned perturbation sets both quantitatively and qualitatively.
We leverage our learned perturbation sets to train models which are empirically and certifiably robust to adversarial image corruptions and adversarial lighting variations.
arXiv Detail & Related papers (2020-07-16T16:39:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.