論文の概要: Fig Tree-Wasp Symbiotic Coevolutionary Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2503.09340v1
- Date: Wed, 12 Mar 2025 12:35:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:40:04.493016
- Title: Fig Tree-Wasp Symbiotic Coevolutionary Optimization Algorithm
- Title(参考訳): フィグツリー-ワスプ共生共生共進化最適化アルゴリズム
- Authors: Anand J Kulkarni, Isha Purnapatre, Apoorva S Shastri,
- Abstract要約: Fig Tree-Wasp Symbiotic Coevolutionary (FWSC)アルゴリズムを提案する。
フィグの木とスズメバチの共生的共進化関係をモデル化する。
このアルゴリズムは様々なテスト問題に対してうまくテストされている。
- 参考スコア(独自算出の注目度): 0.08571111167616165
- License:
- Abstract: The nature inspired algorithms are becoming popular due to their simplicity and wider applicability. In the recent past several such algorithms have been developed. They are mainly bio-inspired, swarm based, physics based and socio-inspired; however, the domain based on symbiotic relation between creatures is still to be explored. A novel metaheuristic optimization algorithm referred to as Fig Tree-Wasp Symbiotic Coevolutionary (FWSC) algorithm is proposed. It models the symbiotic coevolutionary relationship between fig trees and wasps. More specifically, the mating of wasps, pollinating the figs, searching for new trees for pollination and wind effect drifting of wasps are modeled in the algorithm. These phenomena help in balancing the two important aspects of exploring the search space efficiently as well as exploit the promising regions. The algorithm is successfully tested on a variety of test problems. The results are compared with existing methods and algorithms. The Wilcoxon Signed Rank Test and Friedman Test are applied for the statistical validation of the algorithm performance. The algorithm is also further applied to solve the real-world engineering problems. The performance of the FWSC underscored that the algorithm can be applied to wider variety of real-world problems.
- Abstract(参考訳): 自然にインスパイアされたアルゴリズムは、そのシンプルさとより広い適用性のために人気を博している。
近年,いくつかのアルゴリズムが開発されている。
主に生物にインスパイアされた、群れに基づく、物理学に基づく、社会にインスパイアされたものであるが、生物間の共生関係に基づく領域はいまだ研究が続けられている。
The novel metaheuristic optimization algorithm called as Fig Tree-Wasp Symbiotic Coevolutionary (FWSC) algorithm。
フィグの木とスズメバチの共生的共進化関係をモデル化する。
より具体的には、スズメバチの交配、イチジクの受粉、受粉のための新しい樹木の探索、およびスズメバチの風の影響の漂流をアルゴリズムでモデル化する。
これらの現象は、探索空間を効率的に探索する2つの重要な側面のバランスをとるのに役立つ。
このアルゴリズムは様々なテスト問題に対してうまくテストされている。
結果は既存の手法やアルゴリズムと比較される。
Wilcoxon Signed Rank Test と Friedman Test はアルゴリズムの性能の統計的検証に応用される。
このアルゴリズムは現実世界の工学的問題を解決するためにさらに応用される。
FWSCの性能は、アルゴリズムがより幅広い現実世界の問題に適用可能であることを暗示している。
関連論文リスト
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Nature Inspired Evolutionary Swarm Optimizers for Biomedical Image and
Signal Processing -- A Systematic Review [0.0]
論文は28のピアレビュー関連記事と26のネイチャーインスパイアされたアルゴリズムをレビューする。
これらのアルゴリズムは、読者がそれぞれのアルゴリズムの信頼性と探索段階を理解するのを助けるために、徹底的に探索され、より少ない探索と未調査のカテゴリに分離する。
論文 参考訳(メタデータ) (2023-10-02T04:52:46Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
両アプローチの強みを両アプローチの弱さを緩和しつつ組み合わせ, 特殊林を利用した新しいアルゴリズムセレクタを提案する。
HARRISの決定は、ハイブリッドランキングと回帰損失関数に基づいて最適化された木を作成する森林モデルに基づいている。
論文 参考訳(メタデータ) (2022-10-31T14:06:11Z) - ANA: Ant Nesting Algorithm for Optimizing Real-World Problems [21.95618652596178]
アリネストアルゴリズム(ANA)と呼ばれる新しいインテリジェントスワムの提案
このアルゴリズムはLeptothorax antsにインスパイアされ、新しい巣を作りながら穀物を堆積する位置を探すアリの行動を模倣している。
ANAは、変更率を追加することで、検索エージェントの位置を更新する連続アルゴリズムであると考えられている。
論文 参考訳(メタデータ) (2021-12-04T08:55:06Z) - Waypoint Planning Networks [66.72790309889432]
本稿では,ローカルカーネル(A*のような古典的アルゴリズム)と学習アルゴリズムを用いたグローバルカーネルを用いたLSTMに基づくハイブリッドアルゴリズムを提案する。
我々は、WPNとA*を比較し、動き計画ネットワーク(MPNet)やバリューネットワーク(VIN)を含む関連する作業と比較する。
WPN の探索空間は A* よりもかなり小さいが、ほぼ最適な結果が得られることが示されている。
論文 参考訳(メタデータ) (2021-05-01T18:02:01Z) - Selection-Expansion: A Unifying Framework for Motion-Planning and
Diversity Search Algorithms [69.87173070473717]
本稿では,2つの多様性探索アルゴリズム,ノベルティ探索アルゴリズムとゴール探索処理アルゴリズムの特性について検討する。
mpアルゴリズムとの関係は、ポリシーパラメータ空間と結果空間の間のマッピングの滑らかさ、あるいは滑らかさの欠如が検索効率において重要な役割を担っていることを示している。
論文 参考訳(メタデータ) (2021-04-10T13:52:27Z) - A bi-level encoding scheme for the clustered shortest-path tree problem
in multifactorial optimization [1.471992435706872]
CluSPT(Clustered Shortest-Path Tree Problem)は、実生活における様々な最適化問題において重要な役割を果たしている。
近年、CluSPTを扱うためにMFEA(Multifactorial Evolutionary Algorithm)が導入されている。
本稿では,MFEAに基づくCluSPTの解法について述べる。
論文 参考訳(メタデータ) (2021-02-12T13:36:07Z) - Nature-Inspired Optimization Algorithms: Research Direction and Survey [0.0]
自然に着想を得たアルゴリズムは、様々な最適化問題を解くのによく用いられる。
我々は自然に触発されたアルゴリズムを自然進化ベース、群知性ベース、生物ベース、科学ベースなどと分類する。
本研究の目的は, インスピレーション源, 基本演算子, 制御パラメータ, 特徴, 変種, 適用範囲に基づいて, 様々な自然に着想を得たアルゴリズムを網羅的に解析することである。
論文 参考訳(メタデータ) (2021-02-08T06:03:36Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
本稿では,エッジファクター,非プロジェクティブ・スパンニングツリーモデルにおいて,一階期待と二階期待の重要なケースに対する統一アルゴリズムを提案する。
我々のアルゴリズムは勾配と期待の基本的な関係を利用しており、効率的なアルゴリズムを導出することができる。
論文 参考訳(メタデータ) (2020-08-29T14:58:26Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
本稿では, RGA とショート・パス・ツリー・アルゴリズム (SPTA) の主な特徴を組み合わせたクラスタ・ショート・パス・ツリー問題 (CluSPT) を扱うアルゴリズムを提案する。
提案アルゴリズムの性能を評価するため,ユークリッドベンチマークが選択される。
論文 参考訳(メタデータ) (2020-05-05T08:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。