A practical guide to machine learning interatomic potentials -- Status and future
- URL: http://arxiv.org/abs/2503.09814v1
- Date: Wed, 12 Mar 2025 20:24:01 GMT
- Title: A practical guide to machine learning interatomic potentials -- Status and future
- Authors: Ryan Jacobs, Dane Morgan, Siamak Attarian, Jun Meng, Chen Shen, Zhenghao Wu, Clare Yijia Xie, Julia H. Yang, Nongnuch Artrith, Ben Blaiszik, Gerbrand Ceder, Kamal Choudhary, Gabor Csanyi, Ekin Dogus Cubuk, Bowen Deng, Ralf Drautz, Xiang Fu, Jonathan Godwin, Vasant Honavar, Olexandr Isayev, Anders Johansson, Boris Kozinsky, Stefano Martiniani, Shyue Ping Ong, Igor Poltavsky, KJ Schmidt, So Takamoto, Aidan Thompson, Julia Westermayr, Brandon M. Wood,
- Abstract summary: This review paper covers a broad range of topics related to machine learning interatomic potentials (MLIPs)<n>It includes an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLIPs.
- Score: 8.0305939931363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLIPs. This review paper covers a broad range of topics related to MLIPs, including (i) central aspects of how and why MLIPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLIPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLIPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLIPs, (iv) a practical guide for estimating and understanding the execution speed of MLIPs, including guidance for users based on hardware availability, type of MLIP used, and prospective simulation size and time, (v) a manual for what MLIP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLIP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLIPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLIPs over the next 3-10+ years.
Related papers
- Energy & Force Regression on DFT Trajectories is Not Enough for Universal Machine Learning Interatomic Potentials [8.254607304215451]
Universal Machine Learning Interactomic Potentials (MLIPs) enable accelerated simulations for materials discovery.<n>MLIPs' inability to reliably and accurately perform large-scale molecular dynamics (MD) simulations for diverse materials.
arXiv Detail & Related papers (2025-02-05T23:04:21Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Machine Learning Applications to Computational Plasma Physics and Reduced-Order Plasma Modeling: A Perspective [0.0]
This Perspective aims to outline a roadmap for transferring machine learning advances in fluid mechanics to computational plasma physics.
We begin by discussing some general fundamental aspects of ML, including the various categories of ML algorithms and the different types of problems that can be solved with the help of ML.
We then present specific examples from the use of ML in computational fluid dynamics, reviewing several insightful prior efforts.
arXiv Detail & Related papers (2024-09-04T00:35:55Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - A Review of Machine Learning Methods Applied to Structural Dynamics and
Vibroacoustic [0.0]
Three main applications in Vibroacoustic (SD&V) have taken advantage of Machine Learning (ML)
In Structural Health Monitoring, ML detection and prognosis lead to safe operation and optimized maintenance schedules.
System identification and control design are leveraged by ML techniques in Active Noise Control and Active Vibration Control.
The so-called ML-based surrogate models provide fast alternatives to costly simulations, enabling robust and optimized product design.
arXiv Detail & Related papers (2022-04-13T13:16:21Z) - Machine learning enabling high-throughput and remote operations at
large-scale user facilities [0.0]
Machine learning (ML) methods are regularly developed to process and interpret large datasets in real-time with measurements.
We demonstrate a variety of archetypal ML models for on-the-fly analysis at multiple beamlines at the National Synchrotron Light Source II (NSLS-II)
arXiv Detail & Related papers (2022-01-09T17:43:03Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.