論文の概要: SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
- arxiv url: http://arxiv.org/abs/2503.09829v2
- Date: Tue, 18 Mar 2025 06:26:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 10:31:27.542031
- Title: SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
- Title(参考訳): SE(3)-equivariant Robot Learning and Control: A Tutorial Survey
- Authors: Joohwan Seo, Soochul Yoo, Junwoo Chang, Hyunseok An, Hyunwoo Ryu, Soomi Lee, Arvind Kruthiventy, Jongeun Choi, Roberto Horowitz,
- Abstract要約: 本チュートリアルでは,ロボット工学における多種多様な深層学習・制御手法について概説する。
視覚ロボットの操作と制御設計において, 自然な3次元回転と翻訳の対称性を利用するSE(3)-equivariantモデルに焦点をあてる。
- 参考スコア(独自算出の注目度): 2.514398251428326
- License:
- Abstract: Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
- Abstract(参考訳): 近年のディープラーニングとトランスフォーマーの進歩は、模倣学習、強化学習、LLMに基づくマルチモーダル認識や意思決定といった技術を用いて、ロボット工学の大きなブレークスルーを導いている。
しかしながら、従来のディープラーニングとトランスフォーマーモデルは、通常、大きなデータセットや広範なデータ拡張に依存する、固有の対称性と不変性を持つデータを処理するのに苦労することが多い。
等変ニューラルネットワークは、対称性と不変性をアーキテクチャに明示的に統合することでこれらの制限を克服し、効率と一般化を改善した。
本チュートリアルでは, 視覚ロボット操作・制御設計において, 自然な3次元回転・翻訳の対称性を生かしたSE(3)同種のモデルに着目し, 古典的から最先端まで, ロボット工学の多種多様な深層学習・制御手法を概観する。
統一数学的表記法を用いて、行列リー群やリー代数とともに群論から重要な概念をレビューすることから始める。
次に、基礎的なグループ同変ニューラルネットワークの設計を導入し、その構造を通してグループ同変がどのように得られるかを示す。
次に、模倣学習と強化学習の観点から、SE(3)-同変ニューラルネットワークのロボット工学への応用について論じる。
SE(3)-同変制御設計は、幾何学的制御の観点からも見直される。
最後に、より堅牢で、サンプル効率が高く、マルチモーダルな実世界ロボットシステムの開発における同変手法の課題と今後の方向性について述べる。
関連論文リスト
- Large Language-Geometry Model: When LLM meets Equivariance [53.8505081745406]
本稿では,3次元物理システムを表現するための新しいフレームワークであるEquiLLMを提案する。
EquiLLMは分子動力学シミュレーション,ヒトの動作シミュレーション,抗体設計など,従来の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2025-02-16T14:50:49Z) - Text Classification: Neural Networks VS Machine Learning Models VS Pre-trained Models [0.0]
テキスト分類を行う異なる手法の比較を行う。
我々は、事前訓練されたモデル7つ、標準ニューラルネットワーク3つ、機械学習モデル3つを考慮する。
標準的なニューラルネットワークと機械学習モデルでは、TF-IDFとGloVeという2つの埋め込みテクニックを比較します。
論文 参考訳(メタデータ) (2024-12-30T15:44:05Z) - Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
我々は,ロボット自律のための自己教師型ニューロシンボリック(NeSy)計算フレームワーク,インペラティブラーニング(IL)を導入する。
ILを2段階最適化(BLO)として定式化し、3つのモジュール間の相互学習を可能にする。
ILはロボットの自律性を大幅に向上させ、多様な領域にわたるさらなる研究を促進することを期待している。
論文 参考訳(メタデータ) (2024-06-23T12:02:17Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Revolutionizing Traffic Sign Recognition: Unveiling the Potential of Vision Transformers [0.0]
交通信号認識(TSR)は、運転支援システムや自動運転車において重要な役割を担っている。
本研究では、ベースラインモデルとしてビジョントランスフォーマー(PVT、TNT、LNL)と6つの畳み込みニューラルネットワーク(AlexNet、ResNet、VGG16、MobileNet、EfficientNet、GoogleNet)を探索する。
従来の手法の欠点に対処するため、新しいピラミッドEATFormerバックボーンを提案し、進化的アルゴリズム(EA)とTransformerアーキテクチャを組み合わせる。
論文 参考訳(メタデータ) (2024-04-29T19:18:52Z) - A comparison of controller architectures and learning mechanisms for
arbitrary robot morphologies [2.884244918665901]
学習ロボットの形態が事前に分かっていない場合、ロボットコントローラと学習方法の組み合わせはどのように使うべきか。
我々は3つのコントローラとラーナーの組み合わせを実験的に比較した。
有効性、効率、堅牢性を比較します。
論文 参考訳(メタデータ) (2023-09-25T07:11:43Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - Sample Efficient Dynamics Learning for Symmetrical Legged
Robots:Leveraging Physics Invariance and Geometric Symmetries [14.848950116410231]
本稿では,基礎となるロボットシステムにおける対称性を利用したダイナミクスの学習手法を提案する。
ベクトル空間における全てのデータを表す既存のフレームワークは、ロボットの構造化情報を考えるのに失敗する。
論文 参考訳(メタデータ) (2022-10-13T19:57:46Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。