Pushing the Boundary of Quantum Advantage in Hard Combinatorial Optimization with Probabilistic Computers
- URL: http://arxiv.org/abs/2503.10302v2
- Date: Mon, 07 Apr 2025 16:06:25 GMT
- Title: Pushing the Boundary of Quantum Advantage in Hard Combinatorial Optimization with Probabilistic Computers
- Authors: Shuvro Chowdhury, Navid Anjum Aadit, Andrea Grimaldi, Eleonora Raimondo, Atharva Raut, P. Aaron Lott, Johan H. Mentink, Marek M. Rams, Federico Ricci-Tersenghi, Massimo Chiappini, Luke S. Theogarajan, Tathagata Srimani, Giovanni Finocchio, Masoud Mohseni, Kerem Y. Camsari,
- Abstract summary: We show that p-computers can surpass state-of-the-art quantum annealers in solving hard optimization problems.<n>We show that these algorithms are readily implementable in modern hardware thanks to the mature semiconductor technology.<n>Our results raise the bar for a practical quantum advantage in optimization and present p-computers as scalable, energy-efficient hardware.
- Score: 0.4969640751053581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent demonstrations on specialized benchmarks have reignited excitement for quantum computers, yet whether they can deliver an advantage for practical real-world problems remains an open question. Here, we show that probabilistic computers (p-computers) when co-designed with hardware to implement powerful Monte Carlo algorithms can surpass state-of-the-art quantum annealers <a href="https://www.nature.com/articles/s41586-023-05867-2" target="_blank">[King et al., Nature (2023)]</a> in solving certain hard optimization problems. We focus on two key algorithms: discrete-time simulated quantum annealing (DT-SQA) and adaptive parallel tempering (APT), both applied to 3D spin glasses. For DT-SQA, we find that increasing the number of replicas improves residual energy scaling, while parallelizing fewer replicas across independent runs also achieves comparable scaling. Both strategies align with the theoretical expectations from extreme value theory. In addition, APT outperforms DT-SQA when supported by non-local isoenergetic cluster moves. Finite-size scaling analysis suggests a universal behavior that explains the superior performance of APT over both DT-SQA and quantum annealing. We show that these algorithms are readily implementable in modern hardware thanks to the mature semiconductor technology. Unlike software simulations, replicas can be monolithically housed on a single chip and a large number of spins can be updated in parallel and asynchronously, similar to a quantum annealer. We project that custom Field Programmable Gate Arrays (FPGA) or specialized chips leveraging massive parallelism can further accelerate these algorithms by orders of magnitude, while drastically improving energy efficiency. Our results raise the bar for a practical quantum advantage in optimization and present p-computers as scalable, energy-efficient hardware for real-world optimization problems.
Related papers
- Codesigned counterdiabatic quantum optimization on a photonic quantum processor [6.079051215256144]
We focus on the counterdiabatic protocol with a codesigned approach to implement this algorithm on a photonic quantum processor.
We develop and implement an optimized counterdiabatic method by tackling the higher-order many-body interaction terms.
We experimentally demonstrate the advantages of a codesigned mapping of counterdiabatic quantum dynamics for quantum computing on photonic platforms.
arXiv Detail & Related papers (2024-09-26T15:08:19Z) - Hardware-efficient variational quantum algorithm in trapped-ion quantum computer [0.0]
We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI.
We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods.
arXiv Detail & Related papers (2024-07-03T14:02:20Z) - Towards Quantum Computational Mechanics [1.530480694206666]
We show how quantum computing can be used to solve representative element volume (RVE) problems in computational homogenisation.
Our quantum RVE solver attains exponential acceleration with respect to classical solvers.
arXiv Detail & Related papers (2023-12-06T12:53:02Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Fragmented imaginary-time evolution for early-stage quantum signal
processors [0.0]
Simulating quantum imaginary-time evolution (QITE) is a major promise of quantum computation.
Our main contribution is a new generation of deterministic, high-precision QITE algorithms.
We present two QITE-circuit sub-routines with excellent complexity scaling.
arXiv Detail & Related papers (2021-10-25T18:02:24Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.