論文の概要: Out-of-Context Relational Reasoning in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.10408v2
- Date: Tue, 05 Aug 2025 12:45:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 15:23:33.85439
- Title: Out-of-Context Relational Reasoning in Large Language Models
- Title(参考訳): 大規模言語モデルにおける文脈外関係推論
- Authors: Jonathan Shaki, Emanuele La Malfa, Michael Wooldridge, Sarit Kraus,
- Abstract要約: 新たに導入されたトークンの表現を学習するだけで,Large Language Models (LLM) が二項関係の文脈外推論をいかにうまく行うかを検討する。
我々の実験は、平等(=$)、不平等($)、包含($subset$)およびそれらが満たす特性に焦点を当てている。
LLMは、ランダムな精度よりも優れているが、バイナリ関係を含む比較的単純な推論タスクであっても、まだ完璧ではない。
- 参考スコア(独自算出の注目度): 14.326344469446438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Binary relations, such as equality, are basic mathematical concepts that appear, implicitly or explicitly, in most benchmarks for Large Language Models (LLM). A recent trend in the literature is benchmarking LLMs on out-of-context learning, where the data is not presented in the prompt, but only during the model's training. However, existing works mostly focus on higher-order tasks, making it hard to interpret success or failure. In this work, we study how well can LLMs reason out-of-context on binary relations by only learning the representations of newly introduced tokens. Our experiments focus on equality ($=$), inequality ($<$), and inclusion ($\subset$) and the properties they satisfy, such as reflexivity, symmetry, transitivity, and logical complexity (e.g., the number of reasoning "hops"). We show that LLMs achieve better than random accuracy, but are still far from perfect, even on relatively simple reasoning tasks involving binary relations. We analyse the learned representations and show that LLMs encode useful information directly, arranging the embeddings according to the task.
- Abstract(参考訳): 等式のような二項関係は、大言語モデル(LLM)のほとんどのベンチマークにおいて暗黙的または明示的に現れる基本的な数学的概念である。
文献の最近の傾向は、データがプロンプトで表示されるのではなく、モデルのトレーニング中にのみ表示される、文脈外学習のLCMをベンチマークしている。
しかしながら、既存の作業は主に高次のタスクに重点を置いているため、成功や失敗の解釈が難しい。
本研究では,新たに導入されたトークンの表現を学習することで,LLMが二項関係の文脈外推論をいかにうまく行うかを検討する。
我々の実験は、等式(=$)、不等式(=$)、包含(=$)、それらが満たす特性(反射性、対称性、推移性、論理的複雑性(例えば、推論する「ホップの数」)など)に焦点を当てている。
LLMは、ランダムな精度よりも優れているが、バイナリ関係を含む比較的単純な推論タスクであっても、まだ完璧ではない。
我々は学習した表現を分析し、LLMが有用な情報を直接エンコードし、そのタスクに応じて埋め込みをアレンジしたことを示す。
関連論文リスト
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
大規模言語モデル(LLM)は、幅広いタスクで顕著な成功を収めている。
しかし、彼らは情報片間の関係を理解し、推論する必要があるタスクの推論において、依然として課題に直面している。
この課題は、論理的推論やマルチホップ質問応答など、多段階プロセスに関わるタスクにおいて特に顕著である。
本稿では、まず文脈から明示的なグラフを構築することにより、グラフを用いた推論(RwG)を提案する。
論文 参考訳(メタデータ) (2025-01-14T05:18:20Z) - Language Models are Symbolic Learners in Arithmetic [8.34588487873447]
大規模言語モデル(LLM)は、言語モデリングと数値計算の間に固有の違いがあるため、算術学習に苦慮していると考えられている。
まず,算術学習において LLM が部分積を利用するかどうかを検討する。
LLMは学習後にいくつかの部分積を識別できるが、算術的なタスクには利用できない。
論文 参考訳(メタデータ) (2024-10-21T01:57:16Z) - Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models [7.115323364355489]
インコンテキスト学習(In-context learning)は、入力プロンプトのいくつかの例に基づいて適応する能力であり、大きな言語モデル(LLM)のユビキタスな特徴である。
最初に、Llamaが$70$Bで、コンテキスト内で単純なRL問題を解くことができることを示す。
次に、スパースオートエンコーダ(SAE)を用いてLlamaの残差ストリームを分析し、時間差(TD)誤差によく一致する表現を求める。
論文 参考訳(メタデータ) (2024-10-02T06:51:12Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにまたがる印象的な機能を示している。
本稿では,LLMの複雑な論理的推論能力の体系的評価について述べる。
LLMは一般世界の知識の推論に優れるが、専門分野固有の知識では重大な課題に直面している。
論文 参考訳(メタデータ) (2024-07-30T05:40:32Z) - Learning from Natural Language Explanations for Generalizable Entity Matching [19.978468744557173]
バイナリ分類とは対照的に、条件生成タスクとしてエンティティマッチングを再キャストする。
これにより、LLM推論を自然言語による説明を通じて、より小さなエンティティマッチングモデルに分割することが可能になる。
論文 参考訳(メタデータ) (2024-06-13T17:08:58Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
知識ベース質問回答(KBQA)は,知識ベースにおける事実に基づいた自然言語質問への回答を目的としている。
最近の研究は、論理形式生成のための大規模言語モデル(LLM)の機能を活用して性能を向上させる。
論文 参考訳(メタデータ) (2024-01-11T09:27:50Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - An Investigation of LLMs' Inefficacy in Understanding Converse Relations [30.94718664430869]
本稿では,知識グラフ補完データセットから抽出した17の関係と1240のトリプルを含む,逆関係に着目した新しいベンチマークであるConvReを紹介する。
我々のConvREは2つのタスク、Re2TextとText2Reを備えており、LLMが関連テキストと関連するテキストのマッチングを判定する能力を評価するために、多選択質問応答として定式化されている。
論文 参考訳(メタデータ) (2023-10-08T13:45:05Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
我々は、AIシステムにおけるアナロジーを支援するために、直感的な言語ベースの抽象化の使用について検討する。
具体的には,大規模事前学習言語モデル(PLM)を視覚的Raven's Progressive Matrices(RPM)に適用する。
PLMはゼロショットリレーショナル推論に顕著な能力を示し、人間のパフォーマンスを超え、教師付き視覚ベースの手法に近づいた。
論文 参考訳(メタデータ) (2023-05-28T04:22:26Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z) - Large Language Models are few(1)-shot Table Reasoners [31.036914270008978]
大規模言語モデル(LLM)は、テキスト推論タスクを解くために、非常に優れた数ショット推論器である。
本稿では,LLMが数発の文脈内学習でテーブルタスクでどれだけうまく機能するかを理解することを目的としている。
論文 参考訳(メタデータ) (2022-10-13T04:08:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。