論文の概要: Fixed-Point RNNs: Interpolating from Diagonal to Dense
- arxiv url: http://arxiv.org/abs/2503.10799v2
- Date: Thu, 24 Jul 2025 18:03:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 14:14:26.937224
- Title: Fixed-Point RNNs: Interpolating from Diagonal to Dense
- Title(参考訳): 固定点RNN:対角線から高線への補間
- Authors: Sajad Movahedi, Felix Sarnthein, Nicola Muca Cirone, Antonio Orvieto,
- Abstract要約: 並列化可能な対角RNNの固定点としての高密度線形RNNのクラスについて検討する。
結果として得られるモデルは、パラメータの固定数で効率性のために自然に表現性を交換することができる。
- 参考スコア(独自算出の注目度): 10.851383867834052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear recurrent neural networks (RNNs) and state-space models (SSMs) such as Mamba have become promising alternatives to softmax-attention as sequence mixing layers in Transformer architectures. Current models, however, do not exhibit the full state-tracking expressivity of RNNs because they rely on channel-wise (i.e. diagonal) sequence mixing. In this paper, we investigate parameterizations of a large class of dense linear RNNs as fixed-points of parallelizable diagonal linear RNNs. The resulting models can naturally trade expressivity for efficiency at a fixed number of parameters and achieve state-of-the-art results on the commonly used toy tasks $A_5$, $S_5$, copying, and modular arithmetics.
- Abstract(参考訳): Mambaのような線形リカレントニューラルネットワーク(RNN)やステートスペースモデル(SSM)は、トランスフォーマーアーキテクチャにおけるシーケンス混合層としてのソフトマックスアテンションに代わる有望な代替手段となっている。
しかし、現在のモデルはチャネルワイド(対角)配列の混合に依存するため、RNNの完全な状態追跡表現性は示さない。
本稿では, 並列化可能な対角線RNNの固定点としての高密度線形RNNのパラメータ化について検討する。
得られたモデルは、パラメータの固定数で効率性のために自然に表現性を交換し、一般的なおもちゃのタスクである$A_5$, $S_5$, copying, and modular arithmeticsで最先端の結果を得ることができる。
関連論文リスト
- HadamRNN: Binary and Sparse Ternary Orthogonal RNNs [6.524758376347808]
ニューラルネットワークにおけるバイナリおよびスパース3次重みは、より高速な計算とより軽い表現を可能にする。
バニラRNNは、反復重みの変化に非常に敏感であり、これらの重みの双対化と三元化は本質的に困難である。
本稿では,アダマール行列の特性を利用して二進行列および三進行列のサブセットをパラメータ化する手法を提案する。
論文 参考訳(メタデータ) (2025-01-28T09:16:28Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
計算時間と空間複雑度はそれぞれ、列長に関して立方体と二次体から線形へと減少する。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - Attention as an RNN [66.5420926480473]
我々は,そのテキストマンディ・ツー・ワンのRNN出力を効率的に計算できる特別なリカレントニューラルネットワーク(RNN)として注目されることを示す。
本稿では,並列プレフィックススキャンアルゴリズムを用いて,注目のテキストマンディ・ツー・マニーRNN出力を効率よく計算する手法を提案する。
Aarensは、一般的な4つのシーケンシャルな問題設定に散らばる38ドルのデータセットで、Transformersに匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-22T19:45:01Z) - Accelerating Toeplitz Neural Network with Constant-time Inference
Complexity [21.88774274472737]
Toeplitz Neural Networks (TNN) は、様々なシーケンスモデリングタスクにおいて優れた性能を示した。
それらは、ログ線形の時空複雑さの恩恵を受けながら、Transformerベースのモデルよりも優れていた。
本稿では、TNNと状態空間モデル(SSM)の長所を、推論中にTNNをSSMに変換することで組み合わせることを目的とする。
論文 参考訳(メタデータ) (2023-11-15T07:50:57Z) - Universality of Linear Recurrences Followed by Non-linear Projections: Finite-Width Guarantees and Benefits of Complex Eigenvalues [32.783917920167205]
実あるいは複素線型対角線再帰と組み合わせることで、列列列マップの任意に正確な近似が導かれることを示す。
我々は、単位円盤付近で複雑な固有値(すなわち、S4で最も成功した戦略)を利用することが、情報を保存する上で、RNNに大いに役立つことを証明した。
論文 参考訳(メタデータ) (2023-07-21T20:09:06Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - Adaptive-saturated RNN: Remember more with less instability [2.191505742658975]
本研究では,2つのアプローチ間の飽和度を動的に調整する適応飽和RNN(asRNN)を提案する。
我々の実験は、いくつかの強力な競合相手と比較して、挑戦的なシーケンス学習ベンチマークにおけるasRNNの結果を奨励することを示した。
論文 参考訳(メタデータ) (2023-04-24T02:28:03Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Recurrent Neural Network from Adder's Perspective: Carry-lookahead RNN [9.20540910698296]
本稿では、リカレントニューラルネットワーク(RNN)とシリアル加算器の類似性について論じる。
carry-lookahead adder にインスパイアされ、RNN に carry-lookahead モジュールを導入し、RNN の並列実行を可能にする。
論文 参考訳(メタデータ) (2021-06-22T12:28:33Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - Block-term Tensor Neural Networks [29.442026567710435]
ブロック終端テンソル層(BT層)は,CNNやRNNなどのニューラルネットワークモデルに容易に適用可能であることを示す。
CNNとRNNのBT層は、元のDNNの表現力を維持したり改善したりしながら、パラメータ数に対して非常に大きな圧縮比を達成することができる。
論文 参考訳(メタデータ) (2020-10-10T09:58:43Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z) - DiffRNN: Differential Verification of Recurrent Neural Networks [3.4423518864863154]
リカレントニューラルネットワーク(RNN)は、画像処理、データ分類、音声認識、自律システムにおけるコントローラなど、さまざまなアプリケーションで人気を集めている。
構造的に類似した2つのニューラルネットワークの等価性を証明するための最初の差分検証手法であるDIFFRNNを提案する。
各種ベンチマークにおいて本手法の有効性を実証し,DIFFRNNがPOPQORNのような最先端の検証ツールより優れていることを示す。
論文 参考訳(メタデータ) (2020-07-20T14:14:35Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Matrix Smoothing: A Regularization for DNN with Transition Matrix under
Noisy Labels [54.585681272543056]
ノイズラベルの存在下でのディープニューラルネットワーク(DNN)のトレーニングは重要かつ困難な課題である。
最近の確率論的手法はDNNへの遷移行列を直接適用し、DNNの過剰適合に対する感受性を無視する。
そこで本稿では,DNN更新にスムーズな遷移行列を用いてオーバーフィッティングを制限する手法を提案する。
論文 参考訳(メタデータ) (2020-03-26T13:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。