論文の概要: Limits of KV Cache Compression for Tensor Attention based Autoregressive Transformers
- arxiv url: http://arxiv.org/abs/2503.11108v1
- Date: Fri, 14 Mar 2025 06:01:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 22:04:29.197549
- Title: Limits of KV Cache Compression for Tensor Attention based Autoregressive Transformers
- Title(参考訳): テンソルアテンションに基づく自己回帰変換器におけるKVキャッシュ圧縮の限界
- Authors: Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Yu Tian,
- Abstract要約: 自己回帰変換器におけるキー値キャッシュは、推論中に重大なボトルネックを示す。
我々の研究は、テンソルアテンションバージョンによる空間複雑性障壁を一般化する。
全体として、我々の研究はテンソルアテンション機構における圧縮-表現性トレードオフを理解するための理論的基盤を提供する。
- 参考スコア(独自算出の注目度): 30.769940410718558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The key-value (KV) cache in autoregressive transformers presents a significant bottleneck during inference, which restricts the context length capabilities of large language models (LLMs). While previous work analyzes the fundamental space complexity barriers in standard attention mechanism [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a novel reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. In the low dimensional regime where $d = o(\log n)$, we analyze the theoretical bounds of the space complexity as well. Overall, our work provides a theoretical foundation for us to understand the compression-expressivity tradeoff in tensor attention mechanisms and offers more perspectives in developing more memory-efficient transformer architectures.
- Abstract(参考訳): 自己回帰変換器のキー値(KV)キャッシュは、大言語モデル(LLM)のコンテキスト長能力を制限する推論中に重大なボトルネックを示す。
これまでの研究は、標準的な注意機構の基本的な空間複雑性障壁(Haris and Onak, 2025)を分析するが、我々の研究はテンソル注意バージョンによる空間複雑性障壁を一般化する。
我々の理論的な貢献は、通信複雑性の低減と、$d = \Omega(\log n)$のときのテンソル構造的アテンション機構のメモリローバウンドの導出に依存する。
d = o(\log n)$ の低次元状態において、空間複雑性の理論的境界も解析する。
全体として、我々の研究はテンソルアテンション機構における圧縮表現率のトレードオフを理解するための理論的基盤を提供し、よりメモリ効率の良いトランスフォーマーアーキテクチャを開発するための視点を提供する。
関連論文リスト
- SQuat: Subspace-orthogonal KV Cache Quantization [19.131705063324883]
SQuat(Subspace-orthogonal KV cache Quantization)を導入し、ピークメモリを2.17から2.82に削減し、スループットを2.45から3.60に改善し、既存のKVキャッシュ量子化アルゴリズムよりも優れたベンチマークスコアを得る。
我々は,ピークメモリを2.17から2.82に削減し,スループットを2.45から3.60に改善し,既存のKVキャッシュ量子化アルゴリズムよりも優れたベンチマークスコアを得ることを示した。
論文 参考訳(メタデータ) (2025-03-31T17:37:32Z) - Tensor Product Attention Is All You Need [54.40495407154611]
プロダクトアテンション(TPA)は、テンソル分解を使用してクエリ、キー、値をコンパクトに表現する新しいアテンションメカニズムである。
TPAは、メモリ効率とともに改善されたモデル品質を実現する。
本稿では,シーケンスモデリングのための新しいモデルアーキテクチャであるProducT ATTion Transformer (T6)を紹介する。
論文 参考訳(メタデータ) (2025-01-11T03:37:10Z) - Theoretical Constraints on the Expressive Power of $\mathsf{RoPE}$-based Tensor Attention Transformers [23.991344681741058]
本研究では, アテンションと$mathsfRoPE$-based Attentionの回路複雑性を分析し, 固定メンバシップ問題や$(A_F,r)*$クロージャ問題を解くことができないことを示す。
これらの結果は,経験的性能と注意の理論的制約と$mathsfRoPE$ベースの注意変換器とのギャップを浮き彫りにした。
論文 参考訳(メタデータ) (2024-12-23T23:26:07Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - CSR:Achieving 1 Bit Key-Value Cache via Sparse Representation [63.65323577445951]
キャッシュスパース表現(CSR)と呼ばれる新しい手法を提案する。
CSRは、密度の高いKey-Valueキャッシュテンソルをスパースインデックスとウェイトに変換し、LLM推論中によりメモリ効率のよい表現を提供する。
我々の実験は、CSRが最先端KVキャッシュ量子化アルゴリズムに匹敵する性能を達成することを示した。
論文 参考訳(メタデータ) (2024-12-16T13:01:53Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Eigen Attention: Attention in Low-Rank Space for KV Cache Compression [9.080678336379528]
我々は,低ランク空間における注意操作を行うEigen Attentionを提案し,KVキャッシュメモリのオーバーヘッドを低減する。
その結果,Eigen AttentionはKVキャッシュサイズを最大40%削減し,注目動作遅延を最大60%低減し,性能の低下を最小化できることがわかった。
論文 参考訳(メタデータ) (2024-08-10T22:47:12Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
キーバリューキャッシュサイズを減らすための既存のアプローチは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用するかのいずれかである。
キャッシュされたKVペアに対して、$L$とアテンションスコアとの間に明らかな相関関係が見られ、キー埋め込みの低い$L$がデコード時に高いアテンションスコアをもたらす。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T11:35:16Z) - Tensor Attention Training: Provably Efficient Learning of Higher-order Transformers [18.331374727331077]
テンソルアテンションの時間的複雑さは、変圧器におけるその利用にとって重要な障害である。
注意訓練の後方勾配をほぼ線形時間で計算できることを実証する。
論文 参考訳(メタデータ) (2024-05-26T02:59:13Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - FAST: Factorizable Attention for Speeding up Transformers [1.3637227185793512]
本稿では,スペーシフィケーションを伴わずに,注目行列の完全な表現を維持する線形スケールアテンション機構を提案する。
その結果、我々の注意機構は堅牢な性能を示し、自己注意が使用される多様なアプリケーションに対して大きな可能性を秘めていることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T18:59:39Z) - On the Convergence of Encoder-only Shallow Transformers [62.639819460956176]
エンコーダのみの浅部変圧器のグローバル収束理論を現実的な条件下で構築する。
我々の結果は、現代のトランスフォーマー、特にトレーニング力学の理解を深める道を開くことができる。
論文 参考訳(メタデータ) (2023-11-02T20:03:05Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - Mega: Moving Average Equipped Gated Attention [150.3124713793503]
メガ (Mega) は、(予備的な)移動平均を備えた単純で理論上は接地された単頭誘導式アテンション機構である。
我々はMegaがトランスフォーマーの変種や最近の状態空間モデルを含む他のシーケンスモデルよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2022-09-21T20:52:17Z) - Masked Language Modeling for Proteins via Linearly Scalable Long-Context
Transformers [42.93754828584075]
我々は、高速注意Via Orthogonal Random機能(FAVOR)に基づく新しいトランスフォーマーアーキテクチャPerformerを提案する。
我々の機構は、列内のトークンの数で2次ではなく2次的にスケールし、四次空間の複雑さが特徴であり、スパーシティパターンの先行を含まない。
これは強い理論的保証を与える:注意行列の偏りのない推定と一様収束である。
論文 参考訳(メタデータ) (2020-06-05T17:09:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。