論文の概要: CRPS-Based Targeted Sequential Design with Application in Chemical Space
- arxiv url: http://arxiv.org/abs/2503.11250v1
- Date: Fri, 14 Mar 2025 10:00:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:30.540833
- Title: CRPS-Based Targeted Sequential Design with Application in Chemical Space
- Title(参考訳): CRPSに基づくターゲットシーケンス設計と化学空間への応用
- Authors: Lea Friedli, Athénaïs Gautier, Anna Broccard, David Ginsbourger,
- Abstract要約: 我々は、関心の反応の予め定義された範囲内で正確である必要があるGPモデルの獲得戦略に焦点をあてる。
2つの異なる重み付け尺度に依拠して、ポイントワイドおよびインテリジェンス基準を研究し、競合相手に対してそれらをベンチマークする。
得られた獲得戦略は、幅広い分野に適用され、スコアリングルールに依存したシーケンシャルな設計をさらに発展させる道を開く。
- 参考スコア(独自算出の注目度): 0.22499166814992438
- License:
- Abstract: Sequential design of real and computer experiments via Gaussian Process (GP) models has proven useful for parsimonious, goal-oriented data acquisition purposes. In this work, we focus on acquisition strategies for a GP model that needs to be accurate within a predefined range of the response of interest. Such an approach is useful in various fields including synthetic chemistry, where finding molecules with particular properties is essential for developing useful materials and effective medications. GP modeling and sequential design of experiments have been successfully applied to a plethora of domains, including molecule research. Our main contribution here is to use the threshold-weighted Continuous Ranked Probability Score (CRPS) as a basic building block for acquisition functions employed within sequential design. We study pointwise and integral criteria relying on two different weighting measures and benchmark them against competitors, demonstrating improved performance with respect to considered goals. The resulting acquisition strategies are applicable to a wide range of fields and pave the way to further developing sequential design relying on scoring rules.
- Abstract(参考訳): ガウス過程(GP)モデルによる実・コンピュータ実験の逐次設計は、相似で目標指向のデータ取得に有用であることが証明されている。
本研究は,関心の応答の範囲内で精度の高いGPモデルの獲得戦略に焦点をあてる。
このようなアプローチは、合成化学を含む様々な分野において有用であり、有用な材料や有効な医薬品を開発するには、特定の性質を持つ分子を見つけることが不可欠である。
GPモデリングと実験のシーケンシャルな設計は、分子研究を含む多くの領域にうまく適用されている。
ここでの主な貢献は、シーケンシャルデザインで使用される取得関数の基本的なビルディングブロックとして、しきい値重み付き連続ランク付き確率スコア(CRPS)を使用することです。
本稿では,2つの異なる重み付け尺度に依拠するポイントワイド・インテリジェンス基準を検証し,競合相手に対してベンチマークを行い,検討対象とする目標に対する性能向上を実証する。
得られた獲得戦略は、幅広い分野に適用され、スコアリングルールに依存したシーケンシャルな設計をさらに発展させる道を開く。
関連論文リスト
- GFlowNet Pretraining with Inexpensive Rewards [2.924067540644439]
A-GFN(Atomic GFlowNets)は、個々の原子をビルディングブロックとして活用し、薬物のような化学空間をより包括的に探索する基礎的な生成モデルである。
オフラインな薬物様分子データセットを用いた教師なし事前学習手法を提案する。
我々は、目標条件付き微調整プロセスを実装し、A-GFNを適応させて特定の目標特性に最適化する手法をさらに強化する。
論文 参考訳(メタデータ) (2024-09-15T11:42:17Z) - Evaluation Framework for AI-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study [0.0]
マルチターゲットドラッグディスカバリ(Multi-target Drug Discovery、MTDD)は、複雑な疾患に対する薬物発見のパラダイムである。
本稿では,MTDDシナリオにおける分子生成手法の評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T01:42:16Z) - Benchmarking End-To-End Performance of AI-Based Chip Placement Algorithms [77.71341200638416]
ChiPBenchはAIベースのチップ配置アルゴリズムの有効性を評価するために設計されたベンチマークである。
評価のために、さまざまなドメイン(CPU、GPU、マイクロコントローラなど)から20の回路を集めました。
その結果, 単点アルゴリズムの中間距離が支配的であったとしても, 最終的なPPA結果は満足できないことがわかった。
論文 参考訳(メタデータ) (2024-07-03T03:29:23Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEnは'matching'にインスパイアされている。
一致したデータセットによるトレーニングは、データ分布内に留まりながら、興味のある性質の勾配を近似することを示す。
論文 参考訳(メタデータ) (2024-05-28T11:30:19Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Active Learning of Piecewise Gaussian Process Surrogates [2.5399204134718096]
本研究では,Jump GPサロゲートを能動的に学習する手法を開発した。
ジャンプGPは、設計空間の領域において連続であるが、不連続である。
本研究では,Jump GPモデルのバイアスとばらつきを推定する手法を開発した。
論文 参考訳(メタデータ) (2023-01-20T20:25:50Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
SBDD(Structure-based drug design)は、疾患関連タンパク質(ターゲット)に結合する分子を見つけることにより、薬物候補を見つけることを目的とした薬物設計である。
本稿では,ニューラルネットワークを用いた遺伝的アルゴリズム(Reinforced Genetic Algorithm, RGA)を提案する。
論文 参考訳(メタデータ) (2022-11-28T22:59:46Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - DeepGS: Deep Representation Learning of Graphs and Sequences for
Drug-Target Binding Affinity Prediction [8.292330541203647]
本稿では、ディープニューラルネットワークを用いて、アミノ酸やSMILES配列から局所的な化学コンテキストを抽出する、DeepGSと呼ばれる新しいエンドツーエンド学習フレームワークを提案する。
我々は提案手法を,KronRLS,Sim,DeepDTA,DeepCPIといった最先端モデルと比較するための広範な実験を行った。
論文 参考訳(メタデータ) (2020-03-31T01:35:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。