Exponential Quantum Advantage for Simulating Open Classical Systems
- URL: http://arxiv.org/abs/2503.11483v1
- Date: Fri, 14 Mar 2025 15:07:24 GMT
- Title: Exponential Quantum Advantage for Simulating Open Classical Systems
- Authors: Agi Villanyi, Yariv Yanay, Ari Mizel,
- Abstract summary: We show how this advantage can be used to calculate the dynamics of open classical systems experiencing dissipation.<n>This is a particularly interesting class of systems since dissipation plays a key role in contexts ranging from fluid dynamics to thermalization.<n>We give a quantum algorithm with an exponential speedup, capable of simulating $d$ degrees of freedom coupled to $N = 2ngg d$ bath degrees of freedom, to within error $varepsilon$, using $O(rm poly(d, n, t, varepsilon-1)$ quantum gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent promising arena for quantum advantage is simulating exponentially large classical systems. Here, we show how this advantage can be used to calculate the dynamics of open classical systems experiencing dissipation, including the effects of non-Markovian baths. This is a particularly interesting class of systems since dissipation plays a key role in contexts ranging from fluid dynamics to thermalization. We adopt the Caldeira-Leggett Hamiltonian, a generic model for dissipation in which the system is coupled to a bath of harmonic oscillators with a large number of degrees of freedom. To date, the most efficient classical algorithms for simulating such systems have a polynomial dependence on the size of the bath. In this work, we give a quantum algorithm with an exponential speedup, capable of simulating $d$ system degrees of freedom coupled to $N = 2^n\gg d$ bath degrees of freedom, to within error $\varepsilon$, using $O({\rm poly}(d, n, t, \varepsilon^{-1}))$ quantum gates.
Related papers
- Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations [44.99833362998488]
This work presents a practical numerical assessment of a hybrid quantum-classical approach to CFD based on the Lattice Boltzmann Method (LBM)
We evaluate this method on three benchmark cases featuring different boundary conditions, periodic, bounceback, and moving wall.
Our results confirm the validity of the approach, achieving median error fidelities on the order of $10-3$ and success probabilities sufficient for practical quantum state sampling.
arXiv Detail & Related papers (2025-04-17T15:41:48Z) - Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.<n>This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.<n>We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Solving Free Fermion Problems on a Quantum Computer [0.0]
We present several noninteracting fermion problems that can be solved by a quantum algorithm with exponentially-improved, poly log$(N)$ cost.
We show that our simulation algorithm generalizes to other promising targets, including free boson systems.
arXiv Detail & Related papers (2024-09-06T18:25:03Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Classical Chaos in Quantum Computers [39.58317527488534]
Current-day quantum processors, comprising 50-100 qubits, operate outside the range of quantum simulation on classical computers.
We demonstrate that the simulation of classical limits can be a potent diagnostic tool potentially mitigating this problem.
We find that classical and quantum simulations lead to similar stability metrics in systems with $mathcalO$ transmons.
arXiv Detail & Related papers (2023-04-27T18:00:04Z) - Exponential quantum speedup in simulating coupled classical oscillators [1.9398245011675082]
We present a quantum algorithm for the classical dynamics of $2n$ coupled oscillators.
Our approach leverages a mapping between the Schr"odinger equation and Newton's equation for harmonic potentials.
We show that our approach solves a potentially practical application with an exponential speedup over classical computers.
arXiv Detail & Related papers (2023-03-23T03:24:03Z) - Large-scale simulations of Floquet physics on near-term quantum computers [0.3252295747842729]
We introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware.
Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian.
arXiv Detail & Related papers (2023-03-03T20:45:01Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Overcoming exponential scaling with system size in Trotter-Suzuki
implementations of constrained Hamiltonians: 2+1 U(1) lattice gauge theories [1.5675763601034223]
For many quantum systems of interest, the classical computational cost of simulating their time evolution scales exponentially in the system size.
quantum computers have been shown to allow for simulations of some of these systems using resources that scale exponentially with the system size.
This work identifies a term in the Hamiltonian of a class of constrained systems that naively requires quantum resources that scale exponentially in the system size.
arXiv Detail & Related papers (2022-08-05T18:00:52Z) - Quantum Simulation of Open Quantum Systems Using Density-Matrix
Purification [0.0]
We present a general framework for OQSs where the system's $d times d$ density matrix is recast as a $d2$ wavefunction.
We demonstrate this method on a two-level system in a zero temperature amplitude damping channel and a two-site quantum Ising model.
arXiv Detail & Related papers (2022-07-14T17:59:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.