論文の概要: ConjointNet: Enhancing Conjoint Analysis for Preference Prediction with Representation Learning
- arxiv url: http://arxiv.org/abs/2503.11710v1
- Date: Wed, 12 Mar 2025 19:01:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:19.113538
- Title: ConjointNet: Enhancing Conjoint Analysis for Preference Prediction with Representation Learning
- Title(参考訳): ConjointNet: 表現学習による参照予測のためのコンジョイント分析の強化
- Authors: Yanxia Zhang, Francine Chen, Shabnam Hakimi, Totte Harinen, Alex Filipowicz, Yan-Ying Chen, Rumen Iliev, Nikos Arechiga, Kalani Murakami, Kent Lyons, Charlene Wu, Matt Klenk,
- Abstract要約: 本稿では,2つのニューラルアーキテクチャからなるConjointNetを提案する。
提案したコンジョイントネットモデルは、2つの選好データセット上で従来のコンジョイント推定手法を5%以上上回っていることを示す。
- 参考スコア(独自算出の注目度): 5.338147797546082
- License:
- Abstract: Understanding consumer preferences is essential to product design and predicting market response to these new products. Choice-based conjoint analysis is widely used to model user preferences using their choices in surveys. However, traditional conjoint estimation techniques assume simple linear models. This assumption may lead to limited predictability and inaccurate estimation of product attribute contributions, especially on data that has underlying non-linear relationships. In this work, we employ representation learning to efficiently alleviate this issue. We propose ConjointNet, which is composed of two novel neural architectures, to predict user preferences. We demonstrate that the proposed ConjointNet models outperform traditional conjoint estimate techniques on two preference datasets by over 5%, and offer insights into non-linear feature interactions.
- Abstract(参考訳): 消費者の好みを理解することは、製品設計とこれらの新製品に対する市場の反応を予測するために不可欠である。
選択に基づくコンジョイント分析は、調査で選択したユーザ好みをモデル化するために広く用いられている。
しかし、従来のコンジョイント推定手法は単純な線形モデルを仮定する。
この仮定は、製品属性のコントリビューション、特に非線形関係の根底にあるデータに対して、予測可能性の制限と不正確な見積もりをもたらす可能性がある。
本研究では,この問題を効率的に緩和するために表現学習を用いる。
本稿では,2つのニューラルアーキテクチャからなるConjointNetを提案する。
提案したコンジョイントネットモデルは、2つの選好データセット上で従来のコンジョイント推定手法を5%以上上回り、非線形特徴相互作用に関する洞察を提供する。
関連論文リスト
- Behavior Modeling Space Reconstruction for E-Commerce Search [31.17518198481034]
検索システムは、ユーザの嗜好とクエリ項目の関連性を静的に組み合わせ、しばしば固定された論理的「and」関係を通じて、ユーザの振舞いをモデル化する。
本稿では、因果グラフとVenn図の両方を用いて、統一レンズを通して既存のアプローチを再検討する。
これらの課題を克服するために,2つのコンポーネントによる探索精度を高め,行動モデリング空間を再構築する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-30T09:17:04Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparseは、一般化された加法モデルのファミリーから生まれた、新しい機械学習モデルである。
トレーニング中の非線形特徴選択プロセスを通じて、スパシティを促進する。
これにより、予測性能を犠牲にすることなく、モデル空間の改善による解釈可能性を保証する。
論文 参考訳(メタデータ) (2024-03-17T22:44:36Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Price DOES Matter! Modeling Price and Interest Preferences in
Session-based Recommendation [55.0391061198924]
セッションベースのレコメンデーションは、匿名ユーザが自分の短い行動シーケンスに基づいて購入したいアイテムを予測することを目的としている。
セッションベースのレコメンデーションの価格設定を組み込むのは簡単ではない。
セッションベースレコメンデーションのためのCoHHN(Co-guided Heterogeneous Hypergraph Network)を提案する。
論文 参考訳(メタデータ) (2022-05-09T10:47:15Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - On the estimation of discrete choice models to capture irrational
customer behaviors [4.683806391173103]
我々は、部分的にランク付けされた好みを使って、トランザクションデータから合理的で不合理な顧客タイプを効率的にモデル化する方法を示す。
提案手法の予測精度を評価する実験を幅広く行った。
論文 参考訳(メタデータ) (2021-09-08T19:19:51Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Heterogeneous Network Embedding for Deep Semantic Relevance Match in
E-commerce Search [29.881612817309716]
Eコマースアイテム関連性のためのエンドツーエンドの第一次および第二次関連性予測モデルを設計します。
BERTから生成された外部知識を導入し,ユーザ行動のネットワークを改良する。
オフライン実験の結果,新しいモデルにより,人間関係判定における予測精度が有意に向上した。
論文 参考訳(メタデータ) (2021-01-13T03:12:53Z) - On Variational Inference for User Modeling in Attribute-Driven
Collaborative Filtering [10.64460581091531]
本稿では,因果推論を用いて時間的文脈からユーザの属性親和性を学習する手法を提案する。
この目的を確率論的機械学習問題として定式化し、モデルパラメータを推定するために変分推論に基づく手法を適用する。
論文 参考訳(メタデータ) (2020-12-02T22:39:58Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
推奨モデルは、基礎となるユーザの関心を効果的に見積もり、将来の行動を予測することができる。
2つの表現モデルを含む帰納的協調フィルタリングフレームワークを提案する。
本モデルでは,限られたトレーニングレーティングと新規の未確認ユーザを対象に,数ショットのユーザに対して有望なレコメンデーションを行う。
論文 参考訳(メタデータ) (2020-07-09T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。