論文の概要: Adaptive Stochastic Gradient Descents on Manifolds with an Application on Weighted Low-Rank Approximation
- arxiv url: http://arxiv.org/abs/2503.11833v1
- Date: Fri, 14 Mar 2025 19:56:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:33:04.058773
- Title: Adaptive Stochastic Gradient Descents on Manifolds with an Application on Weighted Low-Rank Approximation
- Title(参考訳): マニフォールド上の適応確率勾配線と重み付き低ランク近似への応用
- Authors: Peiqi Yang, Conglong Xu, Hao Wu,
- Abstract要約: 適応学習率を持つ多様体上の勾配降下に対する収束定理を証明した。
重み付けされた低ランク近似問題に適用する。
- 参考スコア(独自算出の注目度): 1.9648630752093679
- License:
- Abstract: We prove a convergence theorem for stochastic gradient descents on manifolds with adaptive learning rate and apply it to the weighted low-rank approximation problem.
- Abstract(参考訳): 適応学習率を持つ多様体上の確率勾配降下に対する収束定理を証明し、重み付き低ランク近似問題に適用する。
関連論文リスト
- Weighted Low-rank Approximation via Stochastic Gradient Descent on Manifolds [1.9648630752093679]
多様体上の閉包を許容する勾配降下に対する収束に基づくリトラクション定理を確立する。
このアルゴリズムはユークリッド空間上の既存の勾配勾配よりも優れる。
また、この多様体上の加速線探索とユークリッド空間上の既存の加速線探索を比較する。
論文 参考訳(メタデータ) (2025-02-20T00:59:50Z) - Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method [5.025654873456757]
本論文は,提案手法の収束性に関する高い確率保証を得るために,低サンプリング複雑性を確立する。
近位サブプロブレムを解くためにサブルーチンが開発され、分散還元のための新しい技術としても機能する。
論文 参考訳(メタデータ) (2024-02-14T07:34:22Z) - Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent [0.3831327965422187]
本稿では,勾配降下(SGD)における適応ステップサイズに対する新しいアプローチを提案する。
我々は、勾配に対するリプシッツ定数と探索方向の局所的分散の概念という、数値的にトレース可能な量を用いる。
論文 参考訳(メタデータ) (2023-11-28T17:03:56Z) - One-step corrected projected stochastic gradient descent for statistical estimation [49.1574468325115]
これは、Fisherスコアリングアルゴリズムの1ステップで修正されたログ様関数の予測勾配勾配に基づいている。
理論およびシミュレーションにより、平均勾配勾配や適応勾配勾配の通常の勾配勾配の代替として興味深いものであることを示す。
論文 参考訳(メタデータ) (2023-06-09T13:43:07Z) - A note on diffusion limits for stochastic gradient descent [0.0]
勾配アルゴリズムにおける雑音の役割を明確にしようとする理論の多くは、ガウス雑音を持つ微分方程式による勾配降下を広く近似している。
本稿では, 自然に発生する騒音を提示する新しい理論的正当化法を提案する。
論文 参考訳(メタデータ) (2022-10-20T13:27:00Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
我々は、勾配収束法を期待する適応勾配法を証明した。
解析では、非理解勾配境界の最適化において、より適応的な勾配法に光を当てた。
論文 参考訳(メタデータ) (2018-08-16T20:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。