L2COcc: Lightweight Camera-Centric Semantic Scene Completion via Distillation of LiDAR Model
- URL: http://arxiv.org/abs/2503.12369v1
- Date: Sun, 16 Mar 2025 06:09:36 GMT
- Title: L2COcc: Lightweight Camera-Centric Semantic Scene Completion via Distillation of LiDAR Model
- Authors: Ruoyu Wang, Yukai Ma, Yi Yao, Sheng Tao, Haoang Li, Zongzhi Zhu, Yong Liu, Xingxing Zuo,
- Abstract summary: This paper proposes L2COcc, a lightweight camera-centric Semantic Scene Completion framework.<n>Our method substantially reduce computational burden while maintaining high accuracy.
- Score: 16.187337394023555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic Scene Completion (SSC) constitutes a pivotal element in autonomous driving perception systems, tasked with inferring the 3D semantic occupancy of a scene from sensory data. To improve accuracy, prior research has implemented various computationally demanding and memory-intensive 3D operations, imposing significant computational requirements on the platform during training and testing. This paper proposes L2COcc, a lightweight camera-centric SSC framework that also accommodates LiDAR inputs. With our proposed efficient voxel transformer (EVT) and cross-modal knowledge modules, including feature similarity distillation (FSD), TPV distillation (TPVD) and prediction alignment distillation (PAD), our method substantially reduce computational burden while maintaining high accuracy. The experimental evaluations demonstrate that our proposed method surpasses the current state-of-the-art vision-based SSC methods regarding accuracy on both the SemanticKITTI and SSCBench-KITTI-360 benchmarks, respectively. Additionally, our method is more lightweight, exhibiting a reduction in both memory consumption and inference time by over 23% compared to the current state-of-the-arts method. Code is available at our project page:https://studyingfufu.github.io/L2COcc/.
Related papers
- FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.<n>Recent methods leverage the range-view representation to improve processing efficiency.<n>We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Unleashing the Potential of Mamba: Boosting a LiDAR 3D Sparse Detector by Using Cross-Model Knowledge Distillation [22.653014803666668]
We propose a Faster LiDAR 3D object detection framework, called FASD, which implements heterogeneous model distillation by adaptively uniform cross-model voxel features.
We aim to distill the transformer's capacity for high-performance sequence modeling into Mamba models with low FLOPs, achieving a significant improvement in accuracy through knowledge transfer.
We evaluated the framework on datasets and nuScenes, achieving a 4x reduction in resource consumption and a 1-2% performance improvement over the current SoTA methods.
arXiv Detail & Related papers (2024-09-17T09:30:43Z) - Enhancing CTC-Based Visual Speech Recognition [11.269066294359144]
LiteVSR2 is an enhanced version of our previously introduced efficient approach to Visual Speech Recognition.
We introduce two key improvements: a stabilized video preprocessing technique and feature normalization in the distillation process.
LiteVSR2 maintains the efficiency of its predecessor while significantly enhancing accuracy.
arXiv Detail & Related papers (2024-09-11T12:02:42Z) - LiCROcc: Teach Radar for Accurate Semantic Occupancy Prediction using LiDAR and Camera [22.974481709303927]
3D radar is gradually replacing LiDAR in autonomous driving applications.
We propose a three-stage tight fusion approach on BEV to realize a fusion framework for point clouds and images.
Our approach enhances the performance in both radar-only (R-LiCROcc) and radar-camera (RC-LiCROcc) settings.
arXiv Detail & Related papers (2024-07-23T05:53:05Z) - TSCM: A Teacher-Student Model for Vision Place Recognition Using Cross-Metric Knowledge Distillation [6.856317526681759]
Visual place recognition plays a pivotal role in autonomous exploration and navigation of mobile robots.<n>Existing methods overcome this by exploiting powerful yet large networks.<n>We propose a high-performance teacher and lightweight student distillation framework called TSCM.
arXiv Detail & Related papers (2024-04-02T02:29:41Z) - CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV
Perception [32.91233926771015]
CALICO is a novel framework that applies contrastive objectives to both LiDAR and camera backbones.
Our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.
arXiv Detail & Related papers (2023-06-01T05:06:56Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Sample and Computation Redistribution for Efficient Face Detection [137.19388513633484]
Training data sampling and computation distribution strategies are the keys to efficient and accurate face detection.
scrfdf34 outperforms the best competitor, TinaFace, by $3.86%$ (AP at hard set) while being more than emph3$times$ faster on GPUs with VGA-resolution images.
arXiv Detail & Related papers (2021-05-10T23:51:14Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - Towards Fast, Accurate and Stable 3D Dense Face Alignment [73.01620081047336]
We propose a novel regression framework named 3DDFA-V2 which makes a balance among speed, accuracy and stability.
We present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving.
arXiv Detail & Related papers (2020-09-21T15:37:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.